DOI QR코드

DOI QR Code

A Review of Microwave-assisted Technology for Biodiesel Production

마이크로파를 이용한 바이오디젤 전환 기술 동향 분석

  • PARK, JO YONG (Research Institute of Petroleum Technology, Korea Petroleum Quality & Distribution Authority) ;
  • JEON, CHEOL-HWAN (Research Institute of Petroleum Technology, Korea Petroleum Quality & Distribution Authority) ;
  • KIM, JAE-KON (Research Institute of Petroleum Technology, Korea Petroleum Quality & Distribution Authority) ;
  • PARK, CHEON-KYU (Research Institute of Petroleum Technology, Korea Petroleum Quality & Distribution Authority)
  • 박조용 (한국석유관리원 석유기술연구소) ;
  • 전철환 (한국석유관리원 석유기술연구소) ;
  • 김재곤 (한국석유관리원 석유기술연구소) ;
  • 박천규 (한국석유관리원 석유기술연구소)
  • Received : 2017.09.27
  • Accepted : 2017.10.30
  • Published : 2017.10.30

Abstract

Biodiesel is renewable, eco-friendly, clean burning diesel replacement that is consisted of short chain alkyl ester. Biodiesel is derived from the transesterification of vegetables oils or animal fats with alcohol. The process has some technical problems that must be resolved to reduce the high operation cost. Eco-friendly physical technologies by using microwave have successfully improved the transesterification for biodiesel production. This paper attempts to extensively review microwave-assisted technology for biodiesel production. Additionally, different types of catalyst for biodiesel production have been summarized. It is concluded that the microwave-assisted technique improves the reaction rate significantly in comparison with conventional methods. Therefore it can be a suitable method of reducing the reaction time and can also decreases the cost of biodiesel production.

Keywords

References

  1. M. Conte, A. Iacobazzi, M. Ronchetti, and R. Vellone, "Hydrogen Economy for a Sustainable Development: State of the Art and Technological Perspectives", J. Power Sources, Vol. 100, 2001, pp. 171-187. https://doi.org/10.1016/S0378-7753(01)00893-X
  2. S. H. Kang, "Analysis of the World Energy Status and Hydrogen Energy Technology R&D of Foreign Countries", Trans. of the Korean Hydrogen and New Energy Society, Vol. 18, 2007, pp. 216-223.
  3. S. Ramalingam, s. Rajendran, and P. Ganesan, " assessment of Engine Operating Parameters on Working Characteristics of a Diesel Engine Fueled with 20% Proportion of Biodiesel Diesel Blend, Energy, Vol. 141, 2017, pp. 907-923. https://doi.org/10.1016/j.energy.2017.09.134
  4. P. M. Nielsen, J. Brask, and L. Fjerbaek, "Enzymatic Biodiesel Production: Technical and Economical Considerations", Eur. J. Lipid Sci. Technol., Vol. 110, 2008, pp. 692-700. https://doi.org/10.1002/ejlt.200800064
  5. J. Hernando, P. Leton, M. P. Matia, J. L. Novella, and J. A. Builla, "Biodiesel and FAME Synthesis Assisted by Microwaves: Homogeneous Batch and Flow Processes", Fuel, Vol. 86, 2007, pp. 1641-1644. https://doi.org/10.1016/j.fuel.2006.11.003
  6. J. Ji, J. Wang, Y. Li, Y. Yu, and Z. Xu, "Preparation of Biodiesel with the Help of Ultrasonic and Hydrodynamic Cavitation", Ultrasonics, Vol. 44, 2006, pp. 411-414. https://doi.org/10.1016/j.ultras.2006.05.020
  7. A. Demirbas, "Biodiesel Fuels from Vegetable Oils Via Catalytic and Non-catalytic Supercritical Alcohol Transesterifications and Other Methods: A Survey", Energy Convers. Manag., Vol. 44, 2003, pp. 2093-2109. https://doi.org/10.1016/S0196-8904(02)00234-0
  8. F. Karaosmanoglu, K. B. Cigizoglu, M. Tuter, and S. Ertekin, "Investigation of the Refining Step of Biodiesel Production", Energy Fuels, Vol. 10, 1996, pp. 890-895. https://doi.org/10.1021/ef9502214
  9. I. Reyes, G. Ciudad, M. Misra, A. Mohanty, D. Jeison, and R. Navia, "Novel Sequential Batch Membrane Reactor to Increase Fatty Acid Methyl Esters Quality at Low Methanol to Oil Molar Ratio", Chem. Eng. J., Vol. 197, 2012, pp. 459-467. https://doi.org/10.1016/j.cej.2012.05.038
  10. M. M. Gui, K. T. Lee, and S. Bhatia, "Feasibility of Edible Oil vs. Non-Edible Oil vs. Waste Edible Oil as Biodiesel Feedstock", Energy, Vol. 33, 2008, pp. 1646-1653. https://doi.org/10.1016/j.energy.2008.06.002
  11. S. H. Shuit, V. T. Ong, K. T. Lee, B. Subhash, and S. H. Tan, "Membrane Technology as a Promising Alternative in Biodiesel Production: A Review", Biotechnol. Adv., Vol. 30, 2012, pp. 1364-1380. https://doi.org/10.1016/j.biotechadv.2012.02.009
  12. Z. Qiu, L. Zhao, and L. Weatherley, "Process in Transesterification Technologies in Continuous Biodiesel Production", Chem. Eng. Process: Process Intensif., Vol. 49, 2010, pp. 323-330. https://doi.org/10.1016/j.cep.2010.03.005
  13. Electricity Books, Jatropha for Biodiesel; 2010 [cited 2011 Nov 18]. Available from: http://www.electricitybook.com/jatropha-biodiesel.
  14. U.S. Energy Information Administration, Total Biofuels Production (Thousand Barrels Per Day); 2010 [cited 2011 Nov 18]. Available from: http://www.eia.gov/cfapps/ipdbproject/ied.
  15. A. S. Silitonga, A. E. Atabani, T. M. I. Mahlia, H. H. Masjuki, I. A. Badruddin, and S. Mekhilet, "A Review on Prospect of Jatropha Curcas for Biodiesel in Indonesia", Renewable and Sustainable Energy Reviews, Vol. 15, 2011, pp. 3733-3756. https://doi.org/10.1016/j.rser.2011.07.011
  16. C. Mustafa, "The Potential of Restaurant Waste lipids as Biodiesel Feed Stocks", Vol. 98, 2007, pp. 183-190. https://doi.org/10.1016/j.biortech.2005.11.022
  17. A. Murugesan, C. Umarani, T. R. Chinnusamy, M. Krishnan, R. Subramanian, and N. Neduzchezhain, "Production and Analysis of Biodiesel from Non-Edible Oils-A Review", Vol. 13, 2009, pp. 825-834. https://doi.org/10.1016/j.rser.2008.02.003
  18. G. Knothe, "Current Perspectives on Biodiesel", Inform., Vol. 13, 2002, pp. 900-903.
  19. P. Cao, M. A. Dube, and A. Y. Tremblay, "High-purity Fatty Acid Methyl Ester Production from Canola, Soybean, Palm, and Yellow Grease Lipids by Mean Sofa Membrane Reactor", Biomass and Bioenergy, Vol. 32, 2008, pp. 1028-1036. https://doi.org/10.1016/j.biombioe.2008.01.020
  20. O. Kibazohi and R. S. Sangwan, "Vegetable Oil Production Potential from Jatropha Curcas, Croton Megalocarpus, Aleurites Moluccana, Moringa Oleifera and Pachira Glabra: Assessment of Renewable Energy Resources for Bio-energy Production in Africa", Biomass and Bioenergy, Vol. 35, 2011, pp. 1352-1356. https://doi.org/10.1016/j.biombioe.2010.12.048
  21. J. A. Dyer, X. P. C. Verge, R. L. Desjardins, D. E. Worth, and B. G. McConkey, "The Impact of Increased Biodiesel Production on the Green House Gas Emissions from Field Crops in Canada", Energy for Sustainable Development, Vol. 14, 2010, pp. 73-82. https://doi.org/10.1016/j.esd.2010.03.001
  22. K. M. Findlater and M. Kandlikar, "Land Use and Second-generation Biofuel Feed-stocks: The Unconsidered Impacts of Jatropha Biodiesel in Rajasthan, India", Energy Policy, Vol. 39, 2011, pp. 3404-3413. https://doi.org/10.1016/j.enpol.2011.03.037
  23. R. R. Tan, A. B. Culaba, and M. R. I. Purvis, "Carbon Balance Implications of Coconut Biodiesel Utilization in the Philippine Automotive Transport Sector", Biomass and Bioenergy, Vol. 26, 2004, pp. 579-585. https://doi.org/10.1016/j.biombioe.2003.10.002
  24. Alternative Profits Report, "Profiting from The Alternative Energy Revolution", [cited 2011 Nov 28]. Available from: http://www.altprofit.com.
  25. World watch Institute, "Biofuels for Transport: Global Potential and Implications for Sustainable Energy and Agriculture", 1st ed. London: Earthscan, 2007, pp. 34.
  26. A. D. Demirbas and I. Demirbas, "Importance of Rural Bioenergy for Developing Countries", Energy Conversion and Management, Vol. 48, 2007, pp. 2386-2398. https://doi.org/10.1016/j.enconman.2007.03.005
  27. F. Ma and M. A. Hanna, "Biodiesel Production: A Review", Bioresource Technology, Vol. 70, 1999, pp. 1-15. https://doi.org/10.1016/S0960-8524(99)00025-5
  28. L. Lin, Z. Cunshan, S. Vittayapadung, S. Xiangqian, and D. Mingdong, "Opportunities and Challenges for Biodiesel Fuel", Applied Energy, Vol. 88, 2011, pp. 1020-1031. https://doi.org/10.1016/j.apenergy.2010.09.029
  29. I. M. Atadashi, M. K. Aroua, and A. A. Aziz, "High Quality Biodiesel and its Diesel Engine Application: A Review", Renewable and Sustainable Energy Reviews, Vol. 14, 2010, pp. 1999-2008. https://doi.org/10.1016/j.rser.2010.03.020
  30. D. Ayhan. "Progress and Recent Trends in Biodiesel Fuels, Energy Conversion and Management", Vol. 50, 2009, pp. 14-34. https://doi.org/10.1016/j.enconman.2008.09.001
  31. S. T. Keera, S. M. ElSabagh, and A. R. Taman, "Transesterification of vegetable oil to biodiesel fuel using alkaline catalyst", Fuel, Vol. 90, 2011, pp. 42-47. https://doi.org/10.1016/j.fuel.2010.07.046
  32. J. M. Dias, M. C. M. Alvim-Ferraz, and M. F. Almeida, "Comparison of the Performance of Different Homogeneous Alkali Catalysts During Transesterification of Waste and Virgin Oils and Evaluation of Biodiesel Quality", Fuel, Vol. 87, 2008, pp. 3572-3578. https://doi.org/10.1016/j.fuel.2008.06.014
  33. B. B. Uzun, m. Kilic, N. Ozbay, A. E. Putun, and E. Putun, "Biodiesel Production from Waste Frying Oils: Optimization of Reaction Parameters and Determination of Fuel Properties", Energy, Vol. 44, 2012, pp. 347-351. https://doi.org/10.1016/j.energy.2012.06.024
  34. H. A. Farag, A. El-Maghraby, and N. A. Taha, "Optimization of Factors Affecting Esterification of Mixed Oil with High Percentage of Free Fatty Acid", Fuel Process Technol., Vol. 92, 2011, pp. 507-510. https://doi.org/10.1016/j.fuproc.2010.11.004
  35. D. A. G. Aranda, R. T. P. Santos, N. C. O. Tapanes, A. L. D. Ramos, and O. A. C. Antunes, "Acid-catalyzed Homogeneous Esterification Reaction for Biodiesel Production from Palm Fatty Acids", Catal. Lett., Vol. 122, 2007, pp. 20-25.
  36. M. S. Berrios, M. A. Martin, and A. Martin, "A Kinetic Study of the Esterification of Free Fatty Acids (FFA) in Sunflower Oil", Fuel, Vol. 86, 2007, pp. 2383-2388. https://doi.org/10.1016/j.fuel.2007.02.002
  37. A. Kawashima, K. Matsubara, and K. Honda, "Acceleration of Catalytic Activity of Calcium Oxide for Biodiesel Production", Bioresource Technol., Vol. 100, 2009, pp. 696-700. https://doi.org/10.1016/j.biortech.2008.06.049
  38. W. Suryaputra, I. Winata, N. Indraswati, and S. Ismadji, "Wastecapiz (Amusium cristatum) Shell as a New Heterogeneous Catalyst for Biodiesel Production", Renew. Energy, Vol. 50, 2013, pp. 795-799. https://doi.org/10.1016/j.renene.2012.08.060
  39. L. M. Correia, R. M. Saboya, S. Campelo, J. A. Cecilia, E. R. CastellonE, and C. L. Cavalcante Jr, "Characterization of Calcium Oxide Catalysts from Natural Sources and their Application in the Transesterification of Sunflower Oil", Bioresour Technol., Vol. 151, 2014, pp. 207-213. https://doi.org/10.1016/j.biortech.2013.10.046
  40. K. Suppalakpanya, S. B. Ratanawilai, and C. Tongurai, "Production of Ethyl Ester from Crude Palm Oil by Two-step Reaction with a Microwave System", Fuel, Vol. 89, 2010, pp. 2140-2144. https://doi.org/10.1016/j.fuel.2010.04.003
  41. J. A. Melero, L. F. Bautista, G. Morales, J. Iglesias, and R. S. Vazquez, "Biodiesel Production from Crude Palm Oil Using Sulfonic Acid-modified Meso Structured Catalysts", Chem. Eng. J., Vol. 161, 2010, pp. 323-331. https://doi.org/10.1016/j.cej.2009.12.037
  42. C. G. Sancho, R. M. Tost, J. M. M. Robles, J. S. Gonzalez, A. J. Lopez, and P. M. Torres, " Niobium-containing MCM-41 Silica Catalysts for Biodiesel Production", Appl. Catal. B: Environ., Vol. 108, 2011, pp. 161-167.
  43. J. M. Cervero, J. R. Alvarez, and S. Luque, "Novozym 435-catalyzed Synthesis of Fatty Acid Ethyl Esters from Soybean Oil for Biodiesel Production", Biomass Bioenergy, Vol. 61, 2014, pp. 131-137. https://doi.org/10.1016/j.biombioe.2013.12.005
  44. T. P. Ngo, A. Li, K. W. Tiew, and Z. Li, "Efficient Transformation of Grease to Biodiesel Using Highly Active and Easily Recyclable Magnetic Nanobio catalyst Aggregates", Bioresource Technol., Vol. 145, 2013, pp. 233-239. https://doi.org/10.1016/j.biortech.2012.12.053
  45. S. A. Biktashev, R. A. Usmanov, R. R. Gabitov, R. A. Gazizov, F. M. Gumerov, F. R. Gabitov, R. A. Gazizov, F. M. Gumeroy, F. R. Gabitov, I. M. Abdulagatov, R. S. Yarullin, and I. A. Yakushev, "Transesterification of Rapeseed and Palm Oils in supercritical Methanol and Ethanol", Biomass and Bioenergy, Vol. 35, 2011, pp. 2999-3011. https://doi.org/10.1016/j.biombioe.2011.03.038
  46. S. Lee, D. Posarac, and N. Ellis, "An Experimental Investigation of Biodiesel Synthesis from Waste Canola Oil using Supercritical Methanol", Fuel, Vol. 91, 2012, pp. 229-237. https://doi.org/10.1016/j.fuel.2011.08.029
  47. J. M. Encinar, I. A. Parda, and G. Martinez, "Transesterification of Rapeseed Oil in Subcritical Methanol Conditions", Fuel Processing Technology, Vol. 94, 2012, pp. 40-46. https://doi.org/10.1016/j.fuproc.2011.10.018
  48. V. Lertsathapornsuk, R. Pairintra, K. Krisnangkura, and S. Chindaruksa, "Direct Conversion of Used Vegetable Oil to Biodiesel and Its use as an Alternative Fuel for Compression Ignition Engine", Proceedings of the 1st International Conference on Energy and Green Architecture, Vol. 2003, pp. 91-96.
  49. N. Saifuddin and K. H. Chua, "Production of Ethyl Ester (Biodiesel) from Used Frying Oil: Optimization of Transesterification Process Using Microwave Irradiation", Malaysian Journal of Chemistry, Vol. 6, 2004, pp. 77-82.
  50. V. Lertsathapornsuk, P. Ruangying, R. Pairintra, and K. Krisnangkura, "Continuous Transethylation of Vegetable Oils by Microwave Irradiation", In: Proceedings of the 1st conference on energy network, Vol. 2005, pp. Thailand RE11-RE14.
  51. Z. Yaakob, I. S. Sukarman, S. K. Kamarudin, S. R. S. Abdullah, and F. Mohamed, "Production of Biodiesel from Jatropha Curcas by Microwave Irradiation", International conference on Renewable Energy Sources, 2008.
  52. M. Z. Duz, A. Saydut, and G. Ozturk. "Alkali Catalyzed Transesterification of Safflower Seed Oil Assisted by Microwave Irradiation", Fuel Processing Technology, Vol. 92, 2011, pp. 308-313. https://doi.org/10.1016/j.fuproc.2010.09.020
  53. E. N. Leadbeater and M. S. Lauren, "Fast, Easy Preparation of Biodiesel using Microwave Heating" Energy Fuels, Vol. 20, 2006, pp. 2281-2283. https://doi.org/10.1021/ef060163u
  54. N. Azcan and A. Danisman, "Alkali Catalyzed Transesterification of Cotton Seed Oil by Microwave Irradiation", Fuel, Vol. 86, 2007, pp. 2639-2644. https://doi.org/10.1016/j.fuel.2007.05.021
  55. J. M. Encinar, J. F. Gonzalez, G. Martinez, N. Salnchez, and A. Pardal, "Soybean Oil Transesterification by the Use of a Microwave Flow System", Fuel, vol. 95, 2012, pp. 386-393. https://doi.org/10.1016/j.fuel.2011.11.010
  56. S. A. El Sherbiny, A. A. Refaat, and S. T. El Sheltawy, "Production of Biodiesel Using the Microwave Technique", Journal of Advanced Research, Vol. 1, 2010, pp. 309-314. https://doi.org/10.1016/j.jare.2010.07.003
  57. R. Kumar, G. RaviKumar, and N. Chandrashekar, "Microwave Assisted Alkali-catalyzed Transesterification of Pongamia Pinnata Seed Oil for Biodiesel Production", Bioresource Technology, Vol. 102, 2011, pp. 6617-6620. https://doi.org/10.1016/j.biortech.2011.03.024
  58. J. Hernando, P. Leton, M. P. Matia, J. L. Novella, and J. A. Builla, "Biodiesel and FAME Synthesis Assisted by Microwaves: Homogeneous Batch and Flow Processes", Fuel, Vol. 86, 2007, pp. 1641-1644. https://doi.org/10.1016/j.fuel.2006.11.003
  59. C. Mazzocchia, G. Modica, A. Kaddouri, and R. Nannicini, "Fatty Acid Methyl Esters Synthesis from Triglycerides over Heterogeneous Catalysts in the Presence of Microwaves", Comptes Rendus Chimie, Vol. 7, 2004, pp. 601-605. https://doi.org/10.1016/j.crci.2003.12.004
  60. H. Yuan, B. L. Yang, and G. L. Zhu, "Synthesis of Biodiesel using Microwave Absorption Catalysts", Energy Fuels, Vol. 23, 2009, pp. 548-552. https://doi.org/10.1021/ef800577j
  61. J. Wang, K. Chen, and C. Chen, "Biodiesel Production from Soybean Oil Catalyzed by K2SiO3/C", Chinese Journal of Catalysis, Vol. 32, 2011, pp. 1592-1596. https://doi.org/10.1016/S1872-2067(10)60265-3
  62. M. W. Majewski, S. A. Pollack, and V. A. Curtis-Palmer, "Diphenylammonium Salt Catalysts for Microwave Assisted Triglyceride Transesterification of Corn and Soybean Oil for Biodiesel Production", Tetrahedron Letters, Vol. 50, 2009, pp. 5175-5177. https://doi.org/10.1016/j.tetlet.2009.06.135
  63. S. Zhang, Y. G. Zu, Y. J. Fu, M. Luo, D. Y. Zhang, and T. Efferth, "Rapid Microwave-assisted Transesterification of Yellow Horn Oil to Biodiesel Using a Hetero-polyacid Solid Catalyst", Bioresource Technology, Vol. 101, 2010, pp. 931-936. https://doi.org/10.1016/j.biortech.2009.08.069
  64. D. Kim, J. Choi, G. J. Kim, S. K. Seol, and S. Jung, "Accelerated Esterification of Free Fatty Acid Using Pulsed Microwaves", Bioresource Technology, Vol. 102, 2011, pp. 7229-7231. https://doi.org/10.1016/j.biortech.2011.04.074
  65. A. Kanitkar, S. Balasubramanian, M. Lima, and D. Boldor, "A Critical Comparison of Methyl and Ethyl Esters Production from Soybean and Rice Bran Oil in the Presence of Microwaves", Bioresource Technology, Vol. 102, 2011, pp. 7896-7902. https://doi.org/10.1016/j.biortech.2011.05.091
  66. B. M. Nogueira, C. Carretoni, R. Cruz, S. Freitas, P. A. Melo Jr, R. Costa-Felix, J. C. Pinto, and M. Nele, "Microwave Activation of Enzymatic Catalysts for Biodiesel Production", Journal of Molecular Catalysis B: Enzymatic, Vol. 67, 2010, pp. 117-121. https://doi.org/10.1016/j.molcatb.2010.07.015
  67. M. Koberg, M. Cohen, A. B. Amotz, and A. Gedanken, "Bio-diesel Production Directly from the Microalgae Biomass of Nannochloropsis by Microwav and Ultrasound Radiation", Bioresource Technology, Vol. 102, 2011, pp. 4265-4269. https://doi.org/10.1016/j.biortech.2010.12.004
  68. T. M. Barnard, E. L. Nicholas, B. B. Matthew, M. S. Lauren, and A. W. Benjamin, "Continuous-flow Preparation of Biodiesel Using Microwave Heating", Energy & Fuels, Vol. 21, 2007, pp. 1777-1781. https://doi.org/10.1021/ef0606207
  69. V. Lertsathapornsuk, R. Pairintra, K. Aryusuk, and K. Krisnangkura, "Microwave Assisted in Continuous Biodiesel Production from Waste Frying Palm Oil and Its Performance in a 100kW Diesel Generator", Fuel Processing Technology, Vol. 89, 2008, pp. 1330-1336. https://doi.org/10.1016/j.fuproc.2008.05.024
  70. C. C. Liao and T. W. Chung, "Analysis of Parameters and Interaction Between Parameters of the Microwave-assisted Continuous Transesterification Process of Jatropha Oil Using Response Surface Methodology", Chemical Engineering Research and Design, Vol. 89, 2011, pp. 2575-2581. https://doi.org/10.1016/j.cherd.2011.06.002
  71. F. Motasemi and F. N. Ani, "A Review on Microwave-assisted Production of Biodiesel", Renewable and Sustainable Energy Reviews, Vol. 16, 2012, pp. 4719-4733. https://doi.org/10.1016/j.rser.2012.03.069
  72. Y. Zahira, B. H. Ong, M. N. S. Kumara, and S. K. Kamarudina, "Microwave-assisted Transesterification of Jatropha and Waste frying Palm Oil", International Journal of Sustainable Energy, Vol. 28, 2009, pp. 195-201. https://doi.org/10.1080/14786450903161006
  73. Y. Rathana, S. A. Roces, F. T. Bacani, R. R. Tan, M. Kubouchi, and P. Yimsiri, "Microwave enhanced Akali Catalyzed Tansesterification of Kenaf Seed Oil", International Journal of Chemical Reactor Engineering, Vol. 8, 2010.
  74. I. V. Kamath, M. B. Regupathiand, and Saidutta, "Microwave- assisted Batch Synthesis of Pongamia Biodiesel", Biofuels, 2010, pp. 847-854.
  75. K. Suppalakpanya, S. B. Ratanawilai, and C. Tongurai, "Production of Ethyl Ester from Esterified Crude Palm Oil by Microwave with Dry Washing by Bleaching Earth", Applied Energy, Vol. 87, 2010, pp. 2356-2359. https://doi.org/10.1016/j.apenergy.2009.12.006
  76. F. Motasemi and F. N. Ani. "The Production of Biodiesel from Waste Cooking Oil Using Microwave Irradiation', Journal Mekanikal, 2011, pp61-72.
  77. M. C. Hsiao, C. C. Lin, and Y. H. Chang, "Microwave Irradiation-assisted Transesterification of Soybean Oil to Biodiesel Catalyzed by Nanopowder Calcium Oxide", Fuel, Vol. 90, 2011, pp. 1963-1967. https://doi.org/10.1016/j.fuel.2011.01.004
  78. I. Manco, L. Giordani, V. Vaccari, and M. Oddone, "Microwave Technology for the Biodiesel Production: Analytical Assessments", Fuel, 2011.
  79. M. Koberg, R. A. Much, and A. Gedanken, "Optimization of Bio-diesel Production from Soybean and Wastes of Cooked Oil: Combining Dielectric Microwave Irradiation and a SrO Catalyst", Bioresource Technology, Vol. 102, 2011, pp. 1073-1078. https://doi.org/10.1016/j.biortech.2010.08.055
  80. G. Perin, G. A'lvaro, E. Westphal, H. VianaL, R. G. Jacob, E. J. Lenardao, M. G. M. D'Oca, "Transesterification of Castor Oil Assisted by Microwave Irradiation", Fuel, Vol. 87, 2008, pp. 2838-2841. https://doi.org/10.1016/j.fuel.2008.01.018
  81. H. V. Kamath, I. Regupathi, and M. B. Saidutta, "Optimization of Two Step Karanja Biodiesel Synthesis under Microwave Irradiation", Fuel Processing Technology, Vol. 92, 2011, pp. 100-105. https://doi.org/10.1016/j.fuproc.2010.09.003
  82. P. Patil, H. Reddy, T. Muppaneni, S. Ponnusamy, Y. Sun, and P. Dailey, "Optimization of Microwave-enhanced Methanolysis of Algal Biomass to Biodiesel under Temperature Controlled Conditions", Bioresource Technol., Vol. 137, 2013, pp. 278-285. https://doi.org/10.1016/j.biortech.2013.03.118
  83. R. Huang, J. Cheng, Y. Qiu, T. Li, J. Zhou, and K. Cen, "Effects of Cytoplasm and Reactant polarities on Acid-catalyzed Lipid Transesterification in Wet Microgalgal Cells Subjected to Mirowave Irradiation", Bioresource Technology, Vol. 200, 2016, pp. 738-743. https://doi.org/10.1016/j.biortech.2015.11.005
  84. T. H. Kim, W. I. Suh, G. Yoo, S. K. Mishra, W. Farooq, M. Moon, A. Shrivastav, M. S. Park, and J. W. Yang, "Development of Direct Conversion Method for Microgalgal Biodiesel Production Using Wet Biomass of Nannochloropsis Salina", Bioresource Technology, Vol. 191, 2015, pp. 438-444. https://doi.org/10.1016/j.biortech.2015.03.033
  85. C. L. Teo and A. Idris, "Evaluation of Direct Transesterification of Microalgae Using Microwave Irradiation", Bioresource Technology, Vol. 174, 2014, pp. 281-286. https://doi.org/10.1016/j.biortech.2014.10.035
  86. J. Cheng, T. Yu, T. Li, J. Zhou, and K. Cen, "Using Wet Microalgae for Direct Biodiesel Production via Microwave irradiation", Bioresource Technology, Vol. 131, 2013, pp. 531-535. https://doi.org/10.1016/j.biortech.2013.01.045