• Title/Summary/Keyword: Microwave power transfer

Search Result 20, Processing Time 0.025 seconds

Development of Transmitter/Receiver Front-End Module with Automatic Tx/Rx Switching Scheme for Retro-Reflective Beamforming

  • Cho, Young Seek
    • Journal of information and communication convergence engineering
    • /
    • v.17 no.3
    • /
    • pp.221-226
    • /
    • 2019
  • In this work, a transmitter/receiver front-end module (T/R FEM) with an automatic Tx/Rx switching scheme for a 2.4 GHz microwave power transfer is developed for a retro-reflective beamforming scheme. Recently, research on wireless power transfer techniques has moved to wireless charging systems for mobile devices. Retro-reflective beamforming is a good candidate for tracking the spatial position of a mobile device to be charged. In Tx mode, the T/R FEM generates a minimum of 1 W. It also comprises an amplitude and phase monitoring port for transmitting RF power. In Rx mode, it passes an Rx pilot signal from a mobile device to a digital baseband subsystem to recognize the position of the mobile device. The insertion loss of the Rx signal path is 4.5 dB. The Tx and Rx modes are automatically switched by detecting the Tx input power. This T/R FEM is a design example of T/R FEMs for wireless charging systems based on a retro-reflective beamforming scheme.

RF and Microwave Power Standards from 10 MHz to 40 GHz over Decades

  • Kang, Tae-Weon;Kwon, Jae-Yong;Park, Jeong-Il;Kang, No-Weon
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.2
    • /
    • pp.88-93
    • /
    • 2018
  • Radio frequency (RF) and microwave power is one of the key quantities in the framework of electromagnetic measurement standards. Therefore, the stability of the power standard is essential to users' reliable measurements in various areas. Coaxial and waveguide thermistor mounts are used as transfer standards of RF and microwave power. Over decades, the effective efficiencies of thermistor mounts have been measured using coaxial and waveguide microcalorimeters in the frequency range of 10 MHz-40 GHz. The measurement uncertainty of the effective efficiency is evaluated. Results show that the power standards have been well maintained within the measurement uncertainty.

Photonic K-Band Microwave Bandpass Filter with Electrically Controllable Transfer Characteristics Based on a Polymeric Ring Resonator (전기적으로 가변되는 전달특성을 갖는 폴리머 링 광공진기를 이용한 마이크로웨이브 대역통과 필터)

  • Kim, Gun-Duk;Lee, Sang-Shin
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.5
    • /
    • pp.475-479
    • /
    • 2006
  • An integrated photonic K-band microwave bandpass filter has been proposed and demonstrated by incorporating a polymeric ring resonator. Its transfer characteristics were adjusted by shilling the resonance wavelength of the ring resonator via the thermooptic effect. The achieved performance of the filter includes the center frequency of 20 GHz, the attenuation of ${\sim}15dB$, the bandwidth of 2 GHz, and the corresponding quality factor of 10. The microwave output power within the passband of the device was adjusted at the rate of about 6.7 dB/mW in the range of 27 dB. This kind of device with electrically controllable transfer characteristics can be applied to implement microwave switches and other devices.

Array Topology of Microwave Wireless Power Transmission on Electronic Power System (전력계통 연계를 대비한 마이크로파 무선전력 송수신기 에레이 구성 고찰)

  • Lee, Dongho
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.1
    • /
    • pp.88-91
    • /
    • 2015
  • Wireless power transmission (WPT) is a technology using free space as a conductor for transmitting electric power, which aims to transfer not just the transmission signal but also the electrical energy itself. This paper takes issue with the microwave wireless transmission technology utilizing in long-distance transmission. To construct the WPT system, several components are needed, such as RF Oscillator which converts AC power to RF through DC status, high gain antenna and RF rectifier that converts RF back to DC. The array topology is good a candidate for wide use. The objective of this research is to study the efect of the WPT systmem on electric power system.

A Study on the Characteristics of Heat transfer of Fire Clay with Microwave Heating (MICROWAVE 가열에 의한 내화 점토의 열전달 특성 연구)

  • Lee, S.J.;Kim, Y.J.;Kim, C.J.;Sung, K.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.202-206
    • /
    • 2001
  • The characteristics of heat transfer on the fire clay with microwave heating are numerically investigated using finite element method. The modelled regular hexahedron chamber($50cm{\times}50cm{\times}50cm$) filled with air consists of vertical heat source and sink walls, a fire clay model, and adiabatic plates at the top and bottom walls. With different geometrical aspect ratios of the fire clay model, the heat energy distribution is throughly investigated. The optimal shape of the fire clay for given chamber geometry and microwave power is analyzed.

  • PDF

Implementation of Effective Wireless Power Transmission Circuit for Low Power System

  • Lho, Young Hwan
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.846-849
    • /
    • 2018
  • Wireless power transfer (WPT) is the technology that enables the power to transmit electromagnetic field to an electrical load without the use of wires. There are two kinds of magnetic resonant coupling and inductive coupling ways transmitting from the source to the output load. Compared with microwave method for energy transfer over a long distance, the magnetic resonance method has the advantages of reducing the barrier of electromagnetic wave and enhancing the efficiency of power transmission. In this paper, the wireless power transfer circuit having a resonant frequency of 13.45 MHz for the low power system is studied, and the hardware implementation is accomplished to measure the power transmission efficiency for the distance between the transmitter and the receiver.

Characteristics of Microwave-Assisted Drying of Plant Cells of Taxus chinensis for Moisture Removal (수분 제거를 위한 식물세포 Taxus chinensis의 마이크로웨이브를 이용한 건조 특성)

  • Nam, Hyeon-Woo;Kim, Jin-Hyun
    • Applied Chemistry for Engineering
    • /
    • v.31 no.2
    • /
    • pp.208-214
    • /
    • 2020
  • In this study, the characteristics and mechanism of microwave-assisted drying were investigated to improve the efficiency of the storage and extraction of biomass through the removal of moisture from plant cell Taxus chinensis. The efficiency of microwave-assisted drying increased with increasing microwave power. When the experimental data were fitted to typical drying kinetic models, the page and modified Page models were the most appropriate. The microwave-assisted drying was determined to be a spontaneous endothermic process, and randomness increased during the drying process. The effective diffusion coefficient (3.445 × 10-9~7.163 × 10-7 ㎡/s) and mass transfer coefficient (3.1529 × 10-5~1.2895 × 10-2 m/s) increased with increasing microwave power. The small Biot number (0.3890~0.7198) indicated that the mass transfer process was externally controlled.

Wireless Power Transfer System

  • Arai, Hiroyuki
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.3
    • /
    • pp.143-151
    • /
    • 2011
  • This paper presents a survey of recent wireless power transfer systems. The issue of wireless power transfer is to achieve a highly efficient system with small positioning errors of the facilities setting. Several theories have been presented to obtain precise system design. This paper presents a summary of design theory for short range power transfer systems and detailed formulations based on a circuit model and an array of infinitesimal dipoles. In addition to these theories, this paper introduces a coil array scheme for improving the efficiency for off axis coils. In the microwave range, tightly coupled resonators provide a highly efficient power transfer system. This paper present san-overlay resonator array consisting of half wavelength microstrip line resonators on the substrate with electromagnetically coupled parasitic elements placed above the bottom resonators. The tight couplings between the waveguide and the load resonator give strong power transmission and achieve a highly efficient system, and enables a contact-less power transfer railroad. Its basic theory and a demonstration of a toy vehicle operating with this system are presented. In the last topic of this paper, harmonic suppression from the rectenna is discussed with respect to acircular microstrip antenna with slits and stubs.

Frequency Offset and Beamforming Algorithm for Microwave Wireless Power Transfer (마이크로파 무선전력전송을 위한 주파수 오프셋 추정과 빔포밍)

  • Lee, Ji-Ho;Lim, Yong-Seok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.503-505
    • /
    • 2018
  • 본 논문에서는 마이크로파 무선전력전송에서 성능을 열화시키는 요인인 주파수 오프셋 문제와 위상 오차에 대해서 다룬다. 2.4GHz 대역을 사용하는 무선랜 표준에서 주파수 오프셋을 추정하기 위한 알고리즘을 소개하고 수신 전력을 증가시키기 위한 RF 빔포밍에 대해서 논의하였다.

  • PDF

A Design of High Efficiency Microwave Wireless Power Acceptor IC (고효율 마이크로파 무선 전력 수신 집적회로 설계 및 구현)

  • Jung, Won-Jae;Jung, Hyo-Bin;Kim, Sang-Kyu;Jang, Jong-Eun;Park, Jun-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.8
    • /
    • pp.1125-1131
    • /
    • 2013
  • Wireless power transmission technology has been studied variety. Recently, wireless power transmission technology used by resonance and magnetic induction field is applied to various fields. However, magnetic resonance and inductive coupling are have drawbacks - power transmission distance is short. Microwave transmission and accept techniques have been developed to overcome short distance. However, improvement in efficiency is required. This paper, propose a high-efficiency microwave energy acceptor IC(EAIC). Suggested EAIC is consists of RF-DC converter and DC-DC converter. Wide Input power range is -15 dBm ~ 20 dBm. And output voltage is boosted up to 5.5 V by voltage boost-up circuit. EAIC can keep the output voltage constant. Available efficiency of RF-DC converter is 95.5 % at 4 dBm input. And DC-DC efficiency is 94.79 % at 1.1 mA load current. Fully EAIC efficiency is 90.5 %.