Browse > Article
http://dx.doi.org/10.3807/KJOP.2006.17.5.475

Photonic K-Band Microwave Bandpass Filter with Electrically Controllable Transfer Characteristics Based on a Polymeric Ring Resonator  

Kim, Gun-Duk (Department of Electronic Engineering, Kwangwoon University)
Lee, Sang-Shin (Department of Electronic Engineering, Kwangwoon University)
Publication Information
Korean Journal of Optics and Photonics / v.17, no.5, 2006 , pp. 475-479 More about this Journal
Abstract
An integrated photonic K-band microwave bandpass filter has been proposed and demonstrated by incorporating a polymeric ring resonator. Its transfer characteristics were adjusted by shilling the resonance wavelength of the ring resonator via the thermooptic effect. The achieved performance of the filter includes the center frequency of 20 GHz, the attenuation of ${\sim}15dB$, the bandwidth of 2 GHz, and the corresponding quality factor of 10. The microwave output power within the passband of the device was adjusted at the rate of about 6.7 dB/mW in the range of 27 dB. This kind of device with electrically controllable transfer characteristics can be applied to implement microwave switches and other devices.
Keywords
Photonic microwave filter; Ring resonator; Polymer waveguide; Thermo-optic effect; Passband shaping;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Seeds, 'Microwave photonics,' IEEE Trans. Microwave Theory Tech., vol. 50, pp. 877-887, 2002   DOI   ScienceOn
2 J. Capmany, D. Pastor, B. Ortega, J. Mora, and M. Andres, 'Photonic processing of microwave signals,' IEEE Proc. Optoelectron., vol. 152, pp. 299-320, 2005   DOI   ScienceOn
3 J. Capmany, B. Ortega, and D. Pastor, 'A tutorial on microwave photonic filters,' J. Lightwave Technol., vol. 24, no. 1, pp. 201-229, 2006   DOI   ScienceOn
4 M. Y. Frankel and R. D. Esman, 'Fiber-optic tunable microwave transversal filter,' IEEE Photon. Technol. Lett., vol. 7, no. 2, pp. 191-193, 1995   DOI   ScienceOn
5 F. Zeng and J. Yao, 'All-optical microwave mixing and bandpass filtering in a radio-over-fiber link,' IEEE Photon. Technol. Lett., vol. 17, no. 4, pp. 899-901, 2005   DOI   ScienceOn
6 D. B. Hunter and R. A. Minasian, 'Microwave optical filters using in-fiber Bragg grating arrays,' IEEE Microwave Guided Wave Lett., vol. 6, no. 2, pp. 103-105, 1996   DOI   ScienceOn
7 W. J. Chin, D. H. Kim, J. H.Song, and S. S. Lee, 'Integrated photonic microwave bandpass filter incorporating a polymeric microring resonator,' Jpn. J. Appl. Phys., vol. 45, no. 4A, pp. 2576-2579, 2006   DOI
8 D. B. Hunter and R. A. Minasian, 'Photonic signal processing of microwave signals using an active-fiber Bragg-grating-pair structure,' IEEE Trans. Microwave Theory Tech., vol. 45, no. 8, pp. 1463-1466, 1997   DOI   ScienceOn
9 B. Vidal, V. Polo, J. L. Corral, and J. Marti, 'Efficient architecture for WDM photonic microwave filters,' IEEE Photon. Technol. Lett., vol. 16, no. 12, pp. 257-259, 2004   DOI   ScienceOn
10 D. B. Hunter and R. A. Minasian, 'Tunable microwave fiber-optic bandpass filters,' IEEE Photon. Technol. Lett., vol. 11, no. 7, pp. 874-876, 1999   DOI   ScienceOn
11 K. Chang and L. H. Hsieh, 'Microwave ring circuits and related structures,' Wiley, Ch.5, 2004
12 A. Yariv, 'Universal relations for coupling of optical power between microresonators and dielectric waveguides,' Electron. Lett., vol. 36, no. 4, pp. 321-322, 2000   DOI   ScienceOn
13 D. H. Kim, J. G. Im, S. S. Lee, S. W. Ahn, and K. D. Lee, 'Polymeric microring resonator using nanoimprint technique based on a stamp incorporating a smoothing buffer layer,' IEEE Photon. Technol. Lett, vol. 17, no. 11, pp. 2352-2354, 2005   DOI   ScienceOn