• 제목/요약/키워드: Microwave plasma enhanced vapor deposition

검색결과 67건 처리시간 0.031초

기판 각도에 따른 탄소나노월의 성장 특성 (Growth Properties of Carbon Nanowall According to the Substrate Angle)

  • 김성윤;정연호;한재찬;최원석
    • 한국전기전자재료학회논문지
    • /
    • 제26권9호
    • /
    • pp.686-689
    • /
    • 2013
  • The carbon nanowall (CNW) is a carbon-based nanomaterials and it was constructed with vertical structure graphenes and it has the highest surface density among carbon-based nanostructures. In this study, we have checked the growth properties of CNW according to the substrate angle. Microwave plasma enhanced chemical vapor deposition (PECVD) system was used to grow CNW on Si substrate with methane ($CH_4$) and hydrogen ($H_2$) gases. And, we have changed the substrate angle from $0^{\circ}$ to $90^{\circ}$ in steps of $30^{\circ}$. The planar and vertical conditions of the grown CNWs according to the substrate angle were characterized by a field emission scanning electron microscopy (FE-SEM) and energy dispersive spectroscopy (EDS). In case of the growth angle increases, our experimental results showed that the length of the CNW was shortened and the content of carbon component was decreased.

HFCVD 증착 온도 변화에 따른 단결정 다이아몬드 표면 형상 및 성장률 변화 (A Study on the Growth Rate and Surface Shape of Single Crystalline Diamond According to HFCVD Deposition Temperature)

  • 권진욱;김민수;장태환;배문기;김성우;김태규
    • 열처리공학회지
    • /
    • 제34권5호
    • /
    • pp.239-244
    • /
    • 2021
  • Following Silicon Carbide, single crystal diamond continues to attract attention as a next-generation semiconductor substrate material. In addition to excellent physical properties, large area and productivity are very important for semiconductor substrate materials. Research on the increase in area and productivity of single crystal diamonds has been carried out using various devices such as HPHT (High Pressure High Temperature) and MPECVD (Microwave Plasma Enhanced Chemical Vapor Deposition). We hit the limits of growth rate and internal defects. However, HFCVD (Hot Filament Chemical Vapor Deposition) can be replaced due to the previous problem. In this study, HFCVD confirmed the distance between the substrate and the filament, the accompanying growth rate, the surface shape, and the Raman shift of the substrate after vapor deposition according to the vapor deposition temperature change. As a result, it was confirmed that the difference in the growth rate of the single crystal substrate due to the change in the vapor deposition temperature was gained up to 5 times, and that as the vapor deposition temperature increased, a large amount of polycrystalline diamond tended to be generated on the surface.

Characterization of linear microwave plasma based on N2/SiH4/NH3 gases using fluid simulation

  • 서권상;한문기;김동현;이해준;이호준
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.131.2-131.2
    • /
    • 2015
  • 마이크로웨이브를 이용한 플라즈마는 효율적인 전자가열이 가능하며, 낮은 이온에너지를 가지는 고밀도 플라즈마를 생성시킬 수 있다는 장점이 있다. 최근 산화물 반도체 및 대화면 디스플레이 장치내 소자의 보호막 증착용으로 저온 PECVD (Plasma Enhanced Chemical Vapor Deposition) 공정 및 장치의 필요성에 따라 마이크로웨이브를 이용한 PECVD 장치가 주목 받고 있다. 본 연구에서는 실리콘 나이트라이드 공정 장치 개발을 위한 2차원 시뮬레이션 모델을 완성하였다. Global modeling을 이용하여 확보한 Chemical reaction data에 대한 검증을 하였다. Maxwell's equation, continuity equation, electromagnetic wave equation 등을 이용하여 Microwave의 파워 및 압력에 따른 전자 밀도, 전자 온도등의 플라즈마 변수의 변화를 관찰하였다. 또한 Navier Stokes equation을 추가하여 챔버 내의 Gas flow의 흐름을 고려한 시뮬레이션을 진행하여 분석하였다.

  • PDF

탄소 나노 튜브의 수직 배향에 대한 바이어스 인가 전압의 효과 (Effect of the Applied Bias Voltage on the Formation of Vertically Well-Aligned Carbon Nanotubes)

  • 김성훈
    • 한국재료학회지
    • /
    • 제13권7호
    • /
    • pp.415-419
    • /
    • 2003
  • Carbon nanotubes were formed on silicon substrate using microwave plasma-enhanced chemical vapor deposition method. The possibility of carbon nanotubes formation was related to the thickness of nickel catalyst. The growth behavior of carbon nanotubes under the identical thickness of nickel catalyst was strongly dependent on the magnitude of the applied bias voltage. High negative bias voltage (-400 V) gave the vertically well-aligned carbon nanotubes. The vertically well-aligned carbon nanotubes have the multi-walled structure with nickel catalyst at the end position of the nanotubes.

Bridge-type formation of iridium-catalyzed carbon nanofibers across the Gap on MgO substrate and their electrical properties

  • Kim, Kwang-Duk;Kim, Sung-Hoon;Kim, Nam-Seok
    • 한국결정성장학회지
    • /
    • 제16권5호
    • /
    • pp.198-202
    • /
    • 2006
  • We could achieve the bridge-type formation of the iridium-catalyzed carbon nanofibers across the gap on the MgO substrate using microwave plasma enhanced chemical vapor deposition method. On the plane surface area of the MgO substrate, the iridium-catalyzed carbon nanofibers were grown as a lateral direction to the substrate. The bridge-type formation and/or the lateral growth of the iridium-catalyzed carbon nanofibers were interconnected with each other. Finally, they could form an entangled network having the bridge-type formation of the carbon nanofibers across the gap on the substrate and the laterally-grown carbon nanofibers on the plane surface area of the substrate. The entangled network showed the semiconductor electrical characteristics.

Different Growth Position of Iridium-catalyzed Carbon Nanofibers on the Substrate According to the Value of the Applied Bias Voltage

  • Kim, Sung-Hoon
    • 한국재료학회지
    • /
    • 제16권1호
    • /
    • pp.25-29
    • /
    • 2006
  • Vertical growth of iridium-catalyzed carbon nanofibers could be selectively grown on the MgO substrate using microwave plasma-enhanced chemical vapor deposition method. Growth positions of the iridium-catalyzed carbon nanofibers on the MgO substrate could be manipulated according to the applied bias voltage. At-150 V, the carbon nanofibers growth was confined only at the corner area of the substrate. Based on these results, we discussed the cause for the confinement of the vertically grown carbon nanofibers on the specific area of the MgO substrate as a function of the applied bias voltage.

마이크로웨이브 플라즈마 CVD에 의한 나노결정질 다이아몬드 박막 성장 시 DC 바이어스 효과 (Effect of DC Bias on the Growth of Nanocrystalline Diamond Films by Microwave Plasma CVD)

  • 김인섭;강찬형
    • 한국표면공학회지
    • /
    • 제46권1호
    • /
    • pp.29-35
    • /
    • 2013
  • The effect of DC bias on the growth of nanocrystalline diamond films on silicon substrate by microwave plasma chemical vapor deposition has been studied varying the substrate temperature (400, 500, 600, and $700^{\circ}C$), deposition time (0.5, 1, and 2h), and bias voltage (-50, -100, -150, and -200 V) at the microwave power of 1.2 kW, working pressure of 110 torr, and gas ratio of Ar/1%$CH_4$. In the case of low negative bias voltages (-50 and -100 V), the diamond particles were observed to grow to thin film slower than the case without bias. Applying the moderate DC bias is believed to induce the bombardment of energetic carbon and argon ions on the substrate to result in etching the surfaces of growing diamond particles or film. In the case of higher negative voltages (-150 and -200 V), the growth rate of diamond film increased with the increasing DC bias. Applying the higher DC bias increased the number of nucleation sites, and, subsequently, enhanced the film growth rate. Under the -150 V bias, the height (h) of diamond films exhibited an $h=k{\sqrt{t}}$ relationship with deposition time (t), where the growth rate constant (k) showed an Arrhenius relationship with the activation energy of 7.19 kcal/mol. The rate determining step is believed to be the surface diffusion of activated carbon species, but the more subtle theoretical treatment is required for the more precise interpretation.

다이아몬드막의 광전도성에 관한 수소 플라즈마 표면 처리의 효과 (Effect of Hydrogen Plasma Treatment on the Photoconductivity of Free-standing Diamond Film)

  • Sung-Hoon, Kim
    • 한국결정성장학회:학술대회논문집
    • /
    • 한국결정성장학회 1999년도 PROCEEDINGS OF 99 INTERNATIONAL CONFERENCE OF THE KACG AND 6TH KOREA·JAPAN EMG SYMPOSIUM (ELECTRONIC MATERIALS GROWTH SYMPOSIUM), HANYANG UNIVERSITY, SEOUL, 06월 09일 JUNE 1999
    • /
    • pp.337-350
    • /
    • 1999
  • Thick diamond film having ~700${\mu}{\textrm}{m}$ thickness was deposited on polycrystalline molybdenum (Mo) substrate using high power (4kW) microwave plasma enhanced chemical vapor deposition (MPECVD) system. We could achieve free-standing diamond film via detaching as-deposited diamond film from the substrate by rapid cooling them under vacuum. We investigated the variation of photoconductivity after exposing the film surface to either oxygen or hydrogen plasma. At as-grown state, the growth side (the as-grown surface of the film) showed noticeable photoconductivity. The oxygen plasma treatment of this side led to the insulator. After exposing the film surface to hydrogen plasma, on the other hand, we could observe the reappearing of photoconductivity at the growth side. Based on these results, we suggest that the hydrogen plasma treatment may enhance the photoconductivity of free-standing diamond film.

  • PDF

마이크로파 플라즈마 화학기상성장법에 의해 (110)면으로 배향된 다이아몬드막의 합성 (Synthesis of (110) Oriented Diamond Films by Microwave Plasma Enhanced Chemical Vapor Deposition)

  • 박재철;박상현
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1995년도 추계학술대회 논문집
    • /
    • pp.269-272
    • /
    • 1995
  • As methane concentration was varietal, the textures of diamond films deposited on Si(100)substrate could be observed by XRD, SEM and Raman spectroscope. As a result, O$_2$plasma etching has been useful to observe microscopic structure of diamond films by SEM. The cross section of diamond films deposited on Si(100) substrate with 4% concentration of methane to hydrogen was a polycrystal like a pillar. The diamond crystal like a pillar has been oriented to (110) surface and the high quality diamond with FWHM of Raman spectra being 3.8cm$\^$-1/ has been grown. As time goes by deposition time, the preferred orientation increases.

  • PDF

마이크로파 플라즈마 화학기상성장법에 의해 (110)면으로 배향된 다이아몬드막의 합성 (Synthesis of (110) oriented diamond films by microwave plasma enhanced chemical vapor deposition)

  • 박재철;박상현
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제9권3호
    • /
    • pp.270-276
    • /
    • 1996
  • As methane concentration was varied, the textures of diamond films deposited on Si(100)substrate were observed by XRD,SEM and Raman spectroscope. As a result, $O_{2}$ plasma etching has been useful to observe microscopic structure of diamond films by SEM. The cross section of diamond films deposited on Si(100)substrate with 4% concentration of methane to hydrogen was a polycrystal like a pillar. The diamond crystal like a pillar has been oriented to (110)surface and the high quality diamond film with FWHM of Raman spectra being 3.8 $cm^{-1}$ / has been grown. As time goes by deposition time, the preferred orientation increases

  • PDF