• Title/Summary/Keyword: Microwave plasma chemical vapour deposition

Search Result 4, Processing Time 0.019 seconds

Self Annealing Effects of Arsenic Ion Implanted Amorphous Carbon Films during Microwave Plasma Chemical Vapor Deposition (As 이온 주입된 비정질 탄소 박막의 마이크로플라즈마 화학기상증착법에 의한 자동 어닐링 효과에 관한 연구)

  • Cho, E.S.;Kwon, S.J.
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.1
    • /
    • pp.31-36
    • /
    • 2013
  • For the simplification of doping process in amorphous carbon film, arsenic (As) ions were implanted on the nucleated silicon wafer before the growth process. Then amorphous carbon films were grown at the condition of $CH_4/H_2=5%$ by microwave plasma chemical vapour deposition. Because the implanted seeds were grown at the high temperature and the implanted ions were spread, it was possible to reduce the process steps by leaving out the annealing process. When the implanted amorphous carbon films were electrically characterized in diode configuration, field emission current of $0.1mA/cm^2$ was obtained at the applied electric field of about $2.5V/{\mu}m$. The results show that the implanted As ions were sufficiently doped by the self-annealing process by using the growth after implantation.

Polymerization of Tetraethoxysilane by Using Remote Argon/dinitrogen oxide Microwave Plasma

  • Chun, Tae-Il;Rossbach, Volker
    • Textile Coloration and Finishing
    • /
    • v.21 no.3
    • /
    • pp.19-25
    • /
    • 2009
  • Polymerization of tetraethoxysilane on a glass substrate was investigated by remote microwave plasma using argon with portions of nitrous oxide as carrier gas. Transparent layer like a thickness of 0.5 ${\mu}m$ 3 ${\mu}m$ were obtained, differing in chemical composition, depending on plasma power and treatment time as well as on ageing time. In general the milder the treatment and the shorter the ageing was, the higher was the content of organic structural elements in the layer. We have identified that the chemical structure of our samples composed of mainly Si O and Si C groups containing aliphatics, carbonyl groups. These results were obtained by X ray photon spectroscopy, Fourier transformed infrared spectroscopy, and scanning electron microscope combined with Energy dispersive X ray spectroscopy.

Millimeter-Scale Aligned Carbon Nanotubes Synthesized by Oxygen-Assisted Microwave Plasma CVD (MPCVD를 이용하여 밀리미터 길이로 수직 정렬된 탄소나노튜브의 합성)

  • Kim, Y.S.;Song, W.S.;Lee, S.Y.;Choi, W.C.;Park, C.Y.
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.3
    • /
    • pp.229-235
    • /
    • 2009
  • Millimeter-scale aligned arrays of thin-multiwalled carbon nanotube (t-MWCNT) on layered Si substrates have been synthesized by oxygen-assisted microwave plasma chemical vapor deposition (MPCVD). We have succeeded in growth of vertically aligned MWCNTs up to 2.7 mm in height for 150 min. The effect of $O_2$ and water vapour on growth rate was systematically investigated. In the case of $O_2$ gas, the growth rate was ${\sim}22{\mu}m/min$, which is outstanding growth rate comparing with those of conventional thermal CVD (TCVD). Scanning electron microscope (SEM), energy-dispersive spectroscopy (EDS), and Raman spectroscopy were used to analyze the CNT morphology, composition and growth mechanism. The role of $O_2$ gas during the CNT growth was discussed on.

Novel synthesis of nanocrystalline thin films by design and control of deposition energy and plasma

  • Han, Jeon G.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.77-77
    • /
    • 2016
  • Thin films synthesized by plasma processes have been widely applied in a variety of industrial sectors. The structure control of thin film is one of prime factor in most of these applications. It is well known that the structure of this film is closely associated with plasma parameters and species of plasma which are electrons, ions, radical and neutrals in plasma processes. However the precise control of structure by plasma process is still limited due to inherent complexity, reproducibility and control problems in practical implementation of plasma processing. Therefore the study on the fundamental physical properties that govern the plasmas becomes more crucial for molecular scale control of film structure and corresponding properties for new generation nano scale film materials development and application. The thin films are formed through nucleation and growth stages during thin film depostion. Such stages involve adsorption, surface diffusion, chemical binding and other atomic processes at surfaces. This requires identification, determination and quantification of the surface activity of the species in the plasma. Specifically, the ions and neutrals have kinetic energies ranging from ~ thermal up to tens of eV, which are generated by electron impact of the polyatomic precursor, gas phase reaction, and interactions with the substrate and reactor walls. The present work highlights these aspects for the controlled and low-temperature plasma enhanced chemical vapour disposition (PECVD) of Si-based films like crystalline Si (c-Si), Si-quantum dot, and sputtered crystalline C by the design and control of radicals, plasmas and the deposition energy. Additionally, there is growing demand on the low-temperature deposition process with low hydrogen content by PECVD. The deposition temperature can be reduced significantly by utilizing alternative plasma concepts to lower the reaction activation energy. Evolution in this area continues and has recently produced solutions by increasing the plasma excitation frequency from radio frequency to ultra high frequency (UHF) and in the range of microwave. In this sense, the necessity of dedicated experimental studies, diagnostics and computer modelling of process plasmas to quantify the effect of the unique chemistry and structure of the growing film by radical and plasma control is realized. Different low-temperature PECVD processes using RF, UHF, and RF/UHF hybrid plasmas along with magnetron sputtering plasmas are investigated using numerous diagnostics and film analysis tools. The broad outlook of this work also outlines some of the 'Grand Scientific Challenges' to which significant contributions from plasma nanoscience-related research can be foreseen.

  • PDF