• Title/Summary/Keyword: Microwave drying

Search Result 130, Processing Time 0.04 seconds

Fabrication and Characterization of Functional Gradient Ceramic Bone Substitutes

  • Kim, Min-Seong;Min, Yeong-Gi;Yang, Hun-Mo;Song, Ho-Yeon;Lee, Byeong-Taek
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.42.2-42.2
    • /
    • 2010
  • Recently, highly porous bone substitutes, which have interconnected open pore structure, have been focused on improving their mechanical properties and modifying their functions. Especially, it is highly required to develop functional gradient structured bone substitute which is available for controlling their material properties such as bioresorption rate and elastic modulus. Porous $ZrO_2$ scaffold was fabricated by the sponge replica method using PU sponge. After 3 times of dip coating and the subsequent oven drying, burning out and microwave sintering were carried out. Various $ZrO_2$-BCP powder mixtures were prepared depending on the ratio and coated on the $ZrO_2$ scaffold by dip coating process. X-ray diffraction analysis was performed to characterize the phase identification of the scaffolds. Microstructures of the bone substitutes were observed using scanning electron microscopy.

  • PDF

An Efficient Method for the Extraction of Astaxanthin from the Red Yeast Xanthophyllomyces dendrorhous

  • Choi, Seok-Keun;Kim, Jeong-Hwan;Park, Young-Sam;Kim, Young-Jin;Chang, Hyo-Ihl
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.847-852
    • /
    • 2007
  • This study investigated an efficient method for the extraction of astaxanthin from the red yeast Xanthophyllomyces dendrorhous. The extraction process comprised three steps: 1) cultivating the yeast; 2) treating the yeast culture suspension with microwaves to destroy the cell walls and microbodies; and 3) drying the yeast and extracting the astaxanthin pigment using ethanol, methanol, acetone, or a mixture of the three as the extraction solvent. Ultimately, various treatment tests were performed to determine the conditions for optimal pigment extraction, and the total carotenoid and astaxanthin contents were quantified. A frequency of 2,450 MHz, an output of 500 watts, and irradiation time of 60 s were the most optimum conditions for yeast cell wall destruction. Furthermore, optimal pigment extraction occurred when using a cell density of 10g/l at $30^{\circ}C$ over 24 h, with a 10% volume of ethanol.

Effects of Storage Conditions of Rice Flour on Growth Properties of Natural Microflora (쌀가루의 저장조건에 따른 자연균총의 생육특성)

  • Choi, Bong-Kyu;Park, Shin-Young;Ha, Sang-Do;Kum, Jun-Seok;Lee, Hyun-Yu;Park, Jong-Dae
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.7
    • /
    • pp.921-925
    • /
    • 2007
  • In order to optimize microbial safety and preservation in quality retention of rice flour, commercial hot-air dry (HT, 65/15 min) and microwave dry (MT, 700 watt/30 sec) treatments were developed, and in this study, natural microflora present in rice flour exposed to different storage temperature and periods were monitored. Changes in color (E) appeared to be less on the MT rice flour than on the rice flour. Effectiveness of the MT treatment showed reduction rates for total aerobic bacteria (2.62 log CFU/g), yeasts, and molds (0.37 log CFU/g). Total aerobic bacteria showed similar growth patterns of all the treatments during storage; however, the MT treatment inhibited the growth of this organism in rice flour. In conclusion, the MT treatment was found to be a suitable drying method to substitute the HT treatment in terms of quality of rice flour and microbial safety.

A Study on Slurry Isolation Through Chemical Processing, with Comparative Analysis and Validation (화학적 처리를 적용한 Slurry 분리 및 비교분석 검증 연구)

  • Na, Wonshik
    • Journal of Digital Contents Society
    • /
    • v.14 no.1
    • /
    • pp.35-40
    • /
    • 2013
  • The use of slurry with a mix of abrasives and coolant for making Wire Saw in the photovoltaic industry has sharply increased with the semiconductor wafer. In this paper, the slurry was isolated, purified and dried by microwave drying method with high-purity silicon carbide powder obtained through chemical processing. Dried slurry bulk was first pulverized and chemical treatment was applied to produce powder. The produced slurry powder was then analyzed by going through the following analysis; thermal analysis, particle size analyses: SEM shots, elemental analysis, XRF and XRD. The results of this study found the recovery rate of the power obtained though the chemical processing to be higher than the one obtained from mineral processing. The results anticipate infrastructure building and active responses to increasingly stronger domestic and international environmental regulations through the integration and recycling of large amounts of slurry in the photovoltaic industry.

A study of optimization of non-fried rice snack using Baekjinju rice flour (백진주 쌀가루를 이용한 비유탕 쌀과자 제조조건의 최적화 연구)

  • Choi, Ok Ja;Jung, Hee Nam;Kim, Young Doo;Shim, Jae-Han;Shim, Ki Hoon
    • Food Science and Preservation
    • /
    • v.20 no.6
    • /
    • pp.810-817
    • /
    • 2013
  • This study investigated the properties of rice snack puffed in a microwave oven after drying its dough according to Baekjinju soaking time and additional soybean milk. The optimum conditions for the non-fried rice snack using Baekjinju wetted flour were determined through the design of an experiment using response surface methodology. The independent variables were the Baekjinju soaking time and the additional soybean milk, and the dependent variables were the weight, volume, density, expansibility, Hunter's color value, hardness, and sensory properties. The quadratic model was chosen for the weight, density, expansibility, b value, and hardness. The two-factor interaction model was chosen for the volume, flavor, appearance, and overall preference. The linear model was chosen for the L value, taste, and texture. The weight was increased to longer than 11.26 days with the increase in the rice soaking. The volume, expansibility, L value, and b value increased with the increase in the rice soaking time and in the additional soybean milk ratio. However, the density was decreased was in reverse. The hardness increased most, with the rice soaking time rising from 5.28 to 8.53 days and the soybean milk additional ratio increasing from 5.34 to 20.26%. The sensory properties improved as rice soaking time decreased, and the soybean milk additional ratio was revered. As for the desirability, the optimal formulation of the dough of non-fried rice snack was achieved by mixing 200 g of Baekjinju flour with a 0.69 days rice soaking time and a 26.67% soybean milk of rice ratio according to weight.

A Study on Speedy Water Content Measurement Method for Soils (흙의 급속 함수비 측정방법에 관한 연구)

  • Park, Sung-Sik;Kim, Ju-Young;Lee, Sae-Byeok
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.1
    • /
    • pp.57-65
    • /
    • 2017
  • During a construction of embankment, sub base, or retaining wall backfill, the speedy measurement of water content is necessary. In this study, a test method for field determination of water content of soil by the calcium carbide gas pressure (speedy water content measurement method) was evaluated for its reliability and accuracy. Dry oven and microwave oven methods were also used for water content measurement. In the test, weathered granite and Nakdong River sand in the site and kaolinite were used for water content measurement. The mass of 20, 22, 24, 26, 28, and 30 g of soil was respectively tested for 1, 3, and 5 min. The effect of each sample on water content was compared one another and analyzed. As the mass and testing time increased, the water content increased. The amount of soil was more important factor than testing time for the speedy water content measurement. In order to obtain similar result to that of dry oven method, 3 min of testing time with 24 g of soil was necessary for weathered granite classified as SM and 3 min with 30 g for Nakdong River sand classified as SP. For Nakdong River sand with 20-50% of kaolinite, the water content by speedy measurement increased as the clay content increased.

The effect of citric acid and enzyme inactivation treatment on C3G stability and antioxidant capacity of mulberry fruit alcoholic drink (구연산 및 효소 불활성화 처리가 오디술의 C3G 안정성과 항산화능에 미치는 영향)

  • Kim, Hyun-Bok;Kim, Jung-Bong;Koo, Hui-Yeon;Seok, Young-Seek;Seo, Sang-Deok;Kim, Sun-Lim;Sung, Gyoo-Byung
    • Journal of Sericultural and Entomological Science
    • /
    • v.51 no.1
    • /
    • pp.36-40
    • /
    • 2013
  • To promote the consumption of mulberry fruit, we manufactured mulberry fruit wine with 'simheung' by different processing methods and analyzed cyanidin-3-glucoside(C3G) stability and antioxidant capacity. In the processing of mulberry fruit alcoholic drink, 3 minutes blanching using microwave inhibited the C3G destruction by maintaining the antioxidant capacity and inactivation of enzymes related to pigment's stability. And freeze-dried mulberry fruit was the highest C3G pigment content and antioxidant capacity. Nevertheless, this is not recommended because the economic burden of the cost of freeze-drying. In conclusion, when processing mulberry fruit wine, the addition of citric acid and the enzyme's inactivation treatment were considered more effective than storage containers (transparent glass, brown glass bottles, aluminum foil, green glass, translucent glass bottles).

Characterization of the PVDF Fibers Fabricated by Hybrid Wet Spinning (하이브리드 습식 공정을 통한 PVDF 섬유의 제조 및 특성에 관한 연구)

  • Jeong, Kun;Kim, Seong-Su
    • Composites Research
    • /
    • v.29 no.4
    • /
    • pp.145-150
    • /
    • 2016
  • Polyvinylidene fluoride (PVDF) as a representative polymer with the piezoelectric property has been studied since the 1960s. Crystalline structure of poly(vinylidene fluoride) polymer is composed of five different crystal structure of the polymer as a semi-crystalline. Among the various crystal structures, ${\beta}-type$ crystal exhibits a piezoelectricity because the permanent dipoles are aligned in one direction. Generally ${\beta}-form$ crystal structure can be obtained through the transformation of the ${\alpha}-form$ crystal structure by the stretching and it can increase the amount through the after treatment as poling process after stretching. ${\beta}-form$ crystal structure the PVDF fibers produced by wet spinning is formed through a diffusion mechanism of a polar solvent in the coagulation bath. However, it has a disadvantage that the diffusion path of the solvent remains as pores in the fiber because the fiber solidification occurs simultaneously with the diffusion of the polar solvent. These pores play a role in reducing effect of poling process owing to effect of disturbances acting on the polarization by the electric field. In this work, the drying method using the microwave was introduced to remove more effectively the residual solvent and the pore within PVDF fibers produced through wet-spinning process and piezoelectric PVDF fibers was produced by transformation of the remaining ${\alpha}$ form crystal structure into ${\beta}-crystal$ structure through the stretching process.

Evaluation on Removal Efficiency of Methylene Blue Using Nano-ZnO/Laponite/PVA Photocatalyzed Adsorption Ball (Nano-ZnO/Laponite/PVA 광촉매 흡착볼의 메틸렌블루 제거효율 평가)

  • Oh, Ju Hyun;Ahn, Hosang;Jang, Dae Gyu;Ahn, Chang Hyuk;Lee, Saeromi;Joo, Jin Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.9
    • /
    • pp.636-642
    • /
    • 2013
  • In order to overcome drawbacks (i.e., filtration and recovery) of conventional powder type photocatalysts, nano-ZnO/Laponite/PVA (ZLP) photocatalyzed adsorption balls were developed by using in situ mixing of nanoscale ZnO as a photocatalyst, and Laponite as both adsorbent and supporting media in deionized water, followed by the poly vinyl alcohol polymerization with boric acid. The optimum mixing ratio of nano-ZnO:Laponite:PVA:deionized water was found to be 3:1:1:16 (by weight), and the mesh and film produced by PVA polymerization with boric acid might inhibit both swelling of Laponite and detachment of nanoscale ZnO from ZLP balls. Drying ZLP balls with microwave (600 watt) was found to produce ZLP balls with stable structure in water, and various sizes (55~500 ${\mu}m$) of pore were found to be distributed based on SEM and TEM results. In the initial period of reaction (i. e., 40 min), adsorption through ionic interaction between methylene blue and Laponite was the main removal mechanism. After the saturation of methylene blue to available adsorption sites for Laponite, the photocatalytic degradation of methylene blue occurred. The effective removal of methylene blue was attributed to adsorption and photocatalytic degradation. Based on the results from this study, synthesized ZLP photocatalyzed adsorption balls were expected to remove recalcitrant organic compounds effectively through both adsorption and photocatalytic degradation, and the risks of environmental receptors caused by detachment of nanoscale photocatalysts can be reduced.

Physicochemical Properties of Brown Rice Flours Produced under Different Drying and Milling Conditions (제조조건에 따른 현미쌀가루 품질특성)

  • Park, Jong-Dae;Choi, Bong-Kyu;Kum, Jun-Seok;Lee, Hyun-You
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.4
    • /
    • pp.495-500
    • /
    • 2006
  • The physicochemical properties of brown rice flours produced under different drying and milling conditions were investigated. Moisture contents of hot-air dried, microwave dried and zet-milled brown rice flours (BrWZH) were 10.7%,13.7% and 8.0%-8.6%, respectively. Water absorption indices (WAI) and water soluble indices (WSI) of roll-milled brown rice flours (BrWRH) were lower (0.40-0.59 g/g; 0.7-3.0%) than those of zet-milled brown rice flours (0.58-0.79 g/g; 4.0-7.3%). Zet-milled brown rice flours had higher Hunter L values and more damaged starch (94.1-96.8; 28.2%) compared to roll-milled brown rice flours (91.3-91.9: 15.5%). The percentage of damaged starch and L values of brown rice flours increased as particle size of brown rice flours decreased. Roll-milled polished rice flour (Control) had the highest L value and lowest amount of damaged starch (97.1; 8.2%). Control, BrWRH, BrWZH, and ultrafine brown rice flour (HBrZMU) had peak viscosity values of 321, 255, 221, and 162 RVU, respectively and trough viscosity values of 217, 185, 175, and 113 RVU, respectively. Peak and trough viscosity (Rapid Visco Analyzer; RVA) properties of rice floors decreased as the particle size of rice flours decreased. HBrZMU demonstrated a higher onset temperature $(61.1^{\circ}C)$ compared to control $(54.8^{\circ}C)$ by differential scanning calorimetric (DSC). Crystal melting enthalpy $({\Delta}H)$ of control and brown rice flours were 10.4 J/g and 6.1-8.7 J/g, respectively. Results of this study suggested that physicochemical properties of brown rice flours were closely related to their particle size.