• 제목/요약/키워드: Microwave assisted reaction

검색결과 49건 처리시간 0.03초

Microwave-assisted pretreatment technologies for the conversion of lignocellulosic biomass to sugars and ethanol: a review

  • Puligundla, Pradeep;Oh, Sang-Eun;Mok, Chulkyoon
    • Carbon letters
    • /
    • 제17권1호
    • /
    • pp.1-10
    • /
    • 2016
  • Lignocellulosic biomass conversion to biofuels such as ethanol and other value-added bio-products including activated carbons has attracted much attention. The development of an efficient, cost-effective, and eco-friendly pretreatment process is a major challenge in lignocellulosic biomass to biofuel conversion. Although several modern pretreatment technologies have been introduced, few promising technologies have been reported. Microwave irradiation or microwave-assisted methods (physical and chemical) for pretreatment (disintegration) of biomass have been gaining popularity over the last few years owing to their high heating efficiency, lower energy requirements, and easy operation. Acid and alkali pretreatments assisted by microwave heating meanwhile have been widely used for different types of lignocellulosic biomass conversion. Additional advantages of microwave-based pretreatments include faster treatment time, selective processing, instantaneous control, and acceleration of the reaction rate. The present review provides insights into the current research and advantages of using microwave-assisted pretreatment technologies for the conversion of lignocellulosic biomass to fermentable sugars in the process of cellulosic ethanol production.

마이크로파를 이용한 바이오디젤 전환 기술 동향 분석 (A Review of Microwave-assisted Technology for Biodiesel Production)

  • 박조용;전철환;김재곤;박천규
    • 한국수소및신에너지학회논문집
    • /
    • 제28권5호
    • /
    • pp.584-599
    • /
    • 2017
  • Biodiesel is renewable, eco-friendly, clean burning diesel replacement that is consisted of short chain alkyl ester. Biodiesel is derived from the transesterification of vegetables oils or animal fats with alcohol. The process has some technical problems that must be resolved to reduce the high operation cost. Eco-friendly physical technologies by using microwave have successfully improved the transesterification for biodiesel production. This paper attempts to extensively review microwave-assisted technology for biodiesel production. Additionally, different types of catalyst for biodiesel production have been summarized. It is concluded that the microwave-assisted technique improves the reaction rate significantly in comparison with conventional methods. Therefore it can be a suitable method of reducing the reaction time and can also decreases the cost of biodiesel production.

마이크로파를 이용한 다시마의 산 가수분해와 에탄올 생산성: 재래식 가열과 비교 (Microwave-Assisted Acid-Hydolysis of Laminaria Japonica and its Ethanol Productivity: Comparison with Conventional Heating)

  • 송명기;나춘기
    • 신재생에너지
    • /
    • 제9권2호
    • /
    • pp.5-14
    • /
    • 2013
  • The efficiency of microwave-assisted acid hydrolysis of seaweeds for the production of ethanol was investigated and its effect on hydrolysis into reducing sugar and fermentation into ethanol evaluated as compared with those by conventional heating. A brown seaweed, Laminaria japonica (10-100g/L) was hydrolysed under dilute acidic condition (0.5N $H_2SO_4$, $100^{\circ}C$) with two sorts of heating: microwave irradiation for ${\leq}10min$ and conventional heating for 10-60min. Microwave-assisted hydrolysis was shown to be more efficient. A similar range of reducing sugar and ethanol yields as with the conventional autoclave heating procedure(${\geq}30min$) was observed, but it was obvious that production of ethanol from microwave-assisted hydrolysis had a 3 times faster reaction rate leading to very short production times, lower energy consumption/loss than from the conventional heating mode, and higher biomass loading without significant reducing ethanol yield, thus microwave-assisted acid hydrolysis is a potential alternative method for more effective hydrolysis of Laminaria japonica.

마이크로웨이브를 이용한 효율적인 탈산소탈수(DODH) 반응: 갈락토스 유래 아디픽산의 합성 (Efficient Microwave-assisted Deoxydehydration (DODH) Reactions: Synthesis of Adipic Acid from Galactose)

  • 신나라;권소현;김영규
    • 공업화학
    • /
    • 제28권2호
    • /
    • pp.165-170
    • /
    • 2017
  • 나일론의 단량체인 아디픽산을 바이오매스인 갈락토스로부터 얻기 위한 효율적인 합성법을 개발하였다. 백금촉매를 이용한 갈락토스의 산화반응을 통해 얻어진 갈락타릭산으로부터 마이크로웨이브를 이용한 탈산소탈수(DODH)반응을 통하여 30 min의 매우 짧은 반응 시간 안에 97%의 높은 수율로 아디픽산의 주요 중간체인 뮤코네이트를 합성하였다. 생성된 뮤코네이트는 팔라듐 촉매를 이용한 수소화 반응 및 가수분해 반응을 통하여 성공적으로 나일론의 단량체인 고순도의 아디픽산으로 전환되었다.

Novel Syntheses of Symmetric Alkyl-substituted β-Diketimines with Dimethylsulfate Assisted by Microwave

  • Yoon, Saetbyeol;Lee, Byoungki;Lee, EungJoon;Lee, Ik Mo
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권10호
    • /
    • pp.2871-2876
    • /
    • 2013
  • We present an efficient and new preparative method for the symmetric ${\beta}$-diketimines assisted by microwave. A series of N,N'-symmetrically alkyl substituted ${\beta}$-diketimines have been synthesized from the reaction of O-acylation with dimethylsulfate. Higher reproducibility and yield, lower cost and much improved green nature originated from no solvent condition and higher energy efficiency due to faster reaction time are major merits of this new method. In addition to these merits, almost every kind of ${\beta}$-diketimines including alkyl-substituted ${\beta}$-diketimines little reported yet has been successfully prepared. Much wider applications of these compounds in various fields are expected.