• 제목/요약/키워드: Microvessel

검색결과 91건 처리시간 0.026초

비소세포 폐암에서 아포프토시스와 종양내 미세 혈관 밀도의 관계 (Correlation Between Apoptosis and Intratumoral Microvessel Density in Non-Small Cell Lung Cancer.)

  • 장인석;김종우;김진국;한정호
    • Journal of Chest Surgery
    • /
    • 제32권2호
    • /
    • pp.151-157
    • /
    • 1999
  • 배경: 많은 실험적인 연구에서 종양 조직 내의 아포프토시스와 미세 혈관의 생성은 서로 반비례한다고 보고된다. 비소세포 폐암 조직내에서 두 수치의 관계를 조사하여 보았다. 대상 및 방법:조직내의 아포프토시스의 정도는 deoxynucleotidyl trasferase방법으로(Apop Tag In Situ Apoptosis Detection Kit, ONCOR) 측정하였고, 종양내 미세 혈관 밀도는 항 CD 31 항체를 이용하였다. 결과:아포프토시스 지수와 종양내 미세 혈관 밀도 사이에는 통계적으로 유의하게 역 상관관계가 있었다(p = 0.047). 결론: 비소세포 폐암종에서 아포프토시스와 미세 혈관 생성의 정도는 서로 연관이 있다고에 할 수있다. 그리고 종양내의 신생 혈관의 생성이 종양내 아포프토시스의 억제에 기여한다고 유추 할 수 있다.

  • PDF

미소혈관 내 백혈구 운동의 검출법 (Detection Method of Leukocyte Motions in a Microvessel)

  • 김응규
    • 융합신호처리학회논문지
    • /
    • 제15권4호
    • /
    • pp.128-134
    • /
    • 2014
  • 본 연구에서는 시공간 영상 해석을 이용한 미소혈관내 백혈구 운동의 검출 방법을 제안한다. 혈관벽에 부착하는 백혈구 운동은 영상내 혈관벽의 윤곽선을 따라 움직이는 것으로 시각화될 수 있다. 제안 방법에서 백혈구는 혈관벽의 윤곽선을 따라 움직인다는 구속조건을 사용하며 시공간 영상 해석방법의 사용에 의해 백혈구 운동을 검출한다. 생성된 시공간 영상은 특수한 목적의 방향 선택 필터에 의해 처리되고 후속의 분류처리가 행해진다. 이 후속의 분류처리는 단순한 임계값 및 윤곽선 처리에 의해 획득된 모든 성분중에서 백혈구 궤적 성분을 선택하고 분류한다. 실험 결과, 제안 방법은 복수개의 백혈구 흔적이 서로 교차할 때에도 백혈구 운동을 안정하게 검출할 수 있음을 보여준다.

생쥐의 동소이식 유방암에서 자도환(慈桃丸)의 in vivo 전이암 성장 억제 및 혈관신생 억제 효과 (Inhibitory Effects of Citaowan on Metastatic Cancer Growth and Agiogenesis in an Orthotopic Model of Breast Cancer)

  • 명유진;강희;심범상
    • 동의생리병리학회지
    • /
    • 제20권6호
    • /
    • pp.1502-1506
    • /
    • 2006
  • To investigate the inhibitory effects of Citaowan (CTW) on the growth and angiogenesis of breast cancer in vivo. Orthotopic breast cancer model was established by injection of MDA-MB-231 cells into mammary fat pad of nude mice. Seven weeks after injection, CTW was orally administered at dose of 50, 100 mg/mouse every day for 40 days. Body weight, tumor volume, tumor apoptosis, microvessel density and tumor proliferation were evaluated, after the mice were sacrificed. The body weight and tumor volume were not significantly changed in CTW group compared with the control group. Tumor apoptosis, proliferation and microvessel density were significantly reduced in CTW group (100 mg/mouse) compared with the control group. These data indicate that CTW has anti-angiogenic and proapoptotic effects on breast cancer.

갑상선 종양에서 VEGF(Vascular Endothelial Growth Factor)의 발현과 신생혈관생성 (Expression of Vascular Endothelial Growth Factor and Angiogenesis in the Thyroid Tumor)

  • 태경;이용섭;박인범;서인석;이형석;오영하;박용수;안유헌
    • 대한두경부종양학회지
    • /
    • 제20권2호
    • /
    • pp.128-134
    • /
    • 2004
  • Background and Objectives: Angiogenesis is the process of new blood vessel development from preexisting vessel. Angiogenenesis has been considered to be essential for the growth and expansion of a solid tumor. Vascular endothelial growth factor (VEGF), known as one of the most important vascular permeability factors, induces proliferation of endothelial cells, stiumulates angiogenesis, and increases vascular permeability. Several recents reports have documented that VEGF overexpression is associated with poor clinical outcomes in many maligmancies. The aims of this study were to determine whether microvessel density and VEGF expression are related to clinicopathologic factors such as age, sex, tumor size, tumor stage, and prognostic factors and to evaluate the relationship between VEGF expression and angiogenesis in benign and malignant thyroid tumors. Materials and Methods: The subjects were 65 patients (27 with papillary carcinoma, 27 with adenomatous hyperplasia, 11 with follicular adenoma) who underwent thyroidectomy from 1995 to 2001. Imuunohistochemistry was used to detect VEGF expression and microvessel density (MVD) in paraffin-embedded thryoid tumor specimens. Results: The intensity of the VEGF expression did not show stastically difference between benign and malignant thyroid tumors. There was no apparent correlation between VEGF expression and age, tumor size, T stage or scores of the AGES, AMES and MACIS systems. The neo-microvessel density was higher in the maligant tumor than the benign tumors. Also, higher neo-microvessel density was associated with metastases of the lymph nodes and scores of the AMES and AGES systems. Conclusion: Our results suggest that neo-microvessel vessel density may be a significant prognostic factor in the thyroid papillary carcinoma. But the VEGF expression does not appear to be an significant independent prognostic factor for thyroid papillary carcinoma.

구강암 발암과정에서 genistein의 혈관형성 억제에 관한 연구 (ANTI-ANGIOGENIC ACTIVITY OF GENISTEIN IN ORAL CARCINOGENESIS)

  • 송승일;김명진
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제30권5호
    • /
    • pp.400-405
    • /
    • 2004
  • Angiogenesis inhibition is major concern to cancer chemotherapy and many studies about compound inhibiting angiogenesis is in progression. The long-known preventive effect of plant-based diet on tumorigenesis and other chronic diseases is well documented. Especially soy extract, genistein, is known to be potent angiogenesis inhibitor and prevent development and progression of tumor. In the present study, the effect of angiogenesis on tumorigenesis and chemopreventive effect of genistein by angiogenesis inhibition in hamster buccal pouch oral carcinigenesis model induced by 7.12-dimethylbenza(a)nthracene (DMBA) was studied. Forty eight Syrian Golden young adult hamsters (150-200 gm) were divided into two groups. In control group, 0.5% DMBA in heavy mineral oil was applied to hamster buccal pouch three times a week and in experimental group, 0.1 mg of genistein is administered orally everyday in addition to DMBA application. The animals were euthanized from 2 weeks to 16 weeks with interval of 2 week. H&E staining and immunohistochemistry was performed to evaluate microvessel density by using factor VIII-related antigen and avidin-biotin technique. Microvessels per area was quantified and compared between control and experimental group statistically. The results were as follows. 1. Microvessel density was increased time dependently in both groups and especially the increase was significant from 12 weeks to 16 weeks. 2. When comparing both group, the experimental group showed significantly low microvessel density than control group in 12 weeks (p=0.043), 14 weeks (p=0.050), 16 weeks (p=0.037). Based on these results, it was concluded that genistein influenced oral carcinogenesis by angiogenesis inhibition.

Chalkley Microvessel but not Lymphatic Vessel Density Correlates with Axillary Lymph Node Metastasis in Primary Breast Cancers

  • Kanngurn, Samornmas;Thongsuksai, Paramee;Chewatanakornkul, Siripong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권1호
    • /
    • pp.583-587
    • /
    • 2013
  • This study aimed to investigate tumor microvessel density (MVD) and lymphatic vessel density (LVD) using the Chalkley method as predictive markers for the risk of axillary lymph node metastasis and their relationship to other clinicopathological parameters in primary breast cancer cases. Forty two node-positive and eighty node-negative breast cancers were immunostained for CD34 and D2-40. MVD and LVD were counted by the Chalkley method at x400 magnification. There was a positive significant correlation of the MVD with the tumor size, coexisting ductal carcinoma in situ (DCIS) and lymph node metastases (P<0.05). In multivariate analysis, the MVD (2.86-4: OR 5.87 95%CI 1.05-32; >4: OR 20.03 95%CI 3.47-115.55), lymphovascular invasion (OR 3.46, 95% CI 1.13-10.58), and associated DCIS (OR 3.1, 95%CI 1.04-9.23) independently predicted axillary lymph node metastasis. There was no significant relationship between LVD and axillary lymph node metastasis. However, D2-40 was a good lymphatic vessel marker to enhance the detection of lymphatic invasion compared to H and E staining. In conclusion, MVD by the Chalkley method, lymphovascular invasion and associated DCIS can be additional predictive factors for axillary lymph node metastases in breast cancer. No relationship was identified between LVD and clinicopathological variables, including axillary lymph node metastasis.

Correlation of Microvessel Density with Nuclear Pleomorphism, Mitotic Count and Vascular Invasion in Breast and Prostate Cancers at Preclinical and Clinical Levels

  • Muhammadnejad, Samad;Muhammadnejad, Ahad;Haddadi, Mahnaz;Oghabian, Mohammad-Ali;Mohagheghi, Mohammad-Ali;Tirgari, Farrokh;Sadeghi-Fazel, Fariba;Amanpour, Saeid
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권1호
    • /
    • pp.63-68
    • /
    • 2013
  • Background: Tumor angiogenesis correlates with recurrence and appears to be a prognostic factor for both breast and prostate cancers. In the present study, we aimed to investigate the correlation of microvessel density (MVD), a measure of angiogenesis, with nuclear pleomorphism, mitotic count, and vascular invasion in breast and prostate cancers at preclinical and clinical levels. Methods: Samples from xenograft tumors of luminal B breast cancer and prostate adenocarcinoma, established by BT-474 and PC-3 cell lines, respectively, and commensurate human paraffin-embedded blocks were obtained. To determine MVD, specimens were immunostained for CD-34. Nuclear pleomorphism, mitotic count, and vascular invasion were determined using hematoxylin and eosin (H&E)-stained slides. Results: MVD showed significant correlations with nuclear pleomorphism (r=0.68, P=0.03) and vascular invasion (r=0.77, P=0.009) in breast cancer. In prostate cancer, MVD was significantly correlated with nuclear pleomorphism (r=0.75, P=0.013) and mitotic count (r=0.75, P=0.012). In the breast cancer xenograft model, a significant correlation was observed between MVD and vascular invasion (r=0.87, P=0.011). In the prostate cancer xenograft model, MVD was significantly correlated with all three parameters (nuclear pleomorphism, r=0.95, P=0.001; mitotic count, r=0.91, P=0.001; and vascular invasion, r=0.79, P=0.017; respectively). Conclusions: Our results demonstrate that MVD is correlated with nuclear pleomorphism, mitotic count, and vascular invasion at both preclinical and clinical levels. This study therefore supports the predictive value of MVD in breast and prostate cancers.

Correlation of Contrast-Enhanced Ultrasonographic Features with Microvessel Density in Papillary Thyroid Carcinomas

  • Zhou, Qi;Jiang, Jue;Shang, Xu;Zhang, Hong-Li;Ma, Wen-Qi;Xu, Yong-Bo;Wang, Hua;Li, Miao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권17호
    • /
    • pp.7449-7452
    • /
    • 2014
  • Background: The purpose of this study was to investigate the correlation of contrast-enhanced ultrasonographic (CEUS) features with microvessel density (MVD) in papillary thyroid carcinomas (PTCs). Materials and Methods: Contrast-enhanced ultrasonography (CEUS) was performed in 62 patients (17 men and 45 women) with PTC. Tomtec software was applied to analyze the time intensity curve of CEUS. Immunohistochemistry was performed to evaluate the level of MVD in papillary thyroid carcinoma. Then the relationship between quantitative feature and the level of MVD was analyzed using SPSS 16.0 software. Results: The mean peak intensity of PTC tissues was lower than that of peripheral thyroid parenchyma ($61.9{\pm}11.8%$ vs 100%, p<0.05). The MVDs of CD34 and CD31 antibodies staining were $38.0{\pm}6.1$ and $37.9{\pm}5.1$ respectively in 62 PTC samples. A significantly positive correlation was observed between peak intensity and MVD in PTC tissues ($P_{CD34}$<0.01, $r_{CD34}$=0.838, $P_{CD31}$<0.01, $r_{CD31}$=0.837). Conclusions: The peak intensity in CEUS could reflect the MVD in PTC tissues. Therefore, quantification of CEUS seems to be helpful for assessment of MVD in PTC tissues.

Expression of Hypoxia-inducible Factor Prolyl Hydroxylase 3 HIFPH3 in Human Non-small Cell Lung Cancer (NSCLC) and Its Correlation with Prognosis

  • Chu, Xiao;Zhu, Cheng-Chu;Liu, Hui;Wang, Jiao-Chen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권14호
    • /
    • pp.5819-5823
    • /
    • 2014
  • Purpose: To investigate the expression of hypoxia-inducible factor prolyl hydroxylase 3 (HIFPH3) in non-small cell lung cancer (NSCLC) and explore the correlation of HIFPH3 expression with lymph node metastasis and microvessel density (MVD). Materials and Methods: A total of 73 cases of NSCLC specimens, 24 cases of para-cancerous tissues, and 20 normal pulmonary tissues were collected for HIFPH3 and CD31 immunohistochmical (IHC) study. Microvessel density (MVD) of the NSCLC tissues was also determined based on the expression of CD31. Results: The expression of HIFPH3 in carcinoma tissue was statistically higher than para-cancerous and normal pulmonary tissues (${\chi}^2=48.806$, p<0.05). Compared withthe negative lymph node metastasis group, the lymph node metastasis group showed significantly higher HIFPH3 expression (${\chi}^2=6.300$, p<0.05). The strong HIFPH3+group displayed a significantly higher MVD than weak HIFPH3+ and HIFPH3- groups (p<0.05). No differences in positive HIFPH3 expression were noted regarding the tumor diameter, age, smoking status, gender of NSCLC patients, tumor size, histopathology, or differentiation. Conclusions: HIFPH3 expression in human NSCLC lesions is significantly higher than that in para-cancerous and normal lung tissues and is positively associated with lymph node metastasis and MVD.

Parecoxib: an Enhancer of Radiation Therapy for Colorectal Cancer

  • Xiong, Wei;Li, Wen-Hui;Jiang, Yong-Xin;Liu, Shan;Ai, Yi-Qin;Liu, Rong;Chang, Li;Zhang, Ming;Wang, Xiao-Li;Bai, Han;Wang, Hong;Zheng, Rui;Tan, Jing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권2호
    • /
    • pp.627-633
    • /
    • 2015
  • Background: To study the effect of parecoxib, a novel cyclooxygenase-2 selective inhibitor, on the radiation response of colorectal cancer (CRC) cells and its underlying mechanisms. Materials and Methods: Both in vitro colony formation and apoptosis assays as well as in vivo mouse xenograft experiments were used to explore the radiosensitizing effects of parecoxib in human HCT116 and HT29 CRC cells. Results: Parecoxib sensitized CRC cells to radiation in vitro with a sensitivity enhancement ratio of 1.32 for HCT116 cells and 1.15 for HT29 cells at a surviving fraction of 0.37. This effect was partially attributable to enhanced apoptosis induction by parecoxib combined with radiation, as illustrated using an in vitro apoptosis assays. Parecoxib augmented the tumor response of HCT116 xenografts to radiation, achieving growth delay more than 20 days and an enhancement factor of 1.53. In accordance with the in vitro results, parecoxib combined with radiation resulted in less proliferation and more apoptosis in tumors than radiation alone. Radiation monotherapy decreased microvessel density (MVD) and microvessel intensity (MVI), but increased the hypoxia level in xenografts. Parecoxib did not affect MVD, but it increased MVI and attenuated hypoxia. Conclusions: Parecoxib can effectively enhance radiation sensitivity in CRC cells through direct effects on tumor cells and indirect effects on tumor vasculature.