• Title/Summary/Keyword: Microtubule

Search Result 282, Processing Time 0.03 seconds

Localization of Autophagosome in Porcine Follicular Cumulus-oocyte Complex

  • Lee, Seunghoon;Kim, Dong-Hoon;Im, Gi-Sun;Ock, Sun-A;Ullah, Imran;Hur, Tai-Young
    • Journal of Embryo Transfer
    • /
    • v.32 no.3
    • /
    • pp.105-109
    • /
    • 2017
  • Autophagy is an intracellular degradation and recycling system. Oocyte maturation is dynamic process, in which various proteins should be synthesized and degraded. In our previous study, we reported the loci of autophagosome and dynamics of autophagic activity in porcine oocytes during in vitro maturation. In this study, we verified loci of autophagosome in porcine follicular cumulus-oocyte complex by detection of microtubule-associated protein 1A/1B-light chain 3 (LC3) which is the reliable marker of autophagosome. Porcine ovary including various sizes of follicles was fixed within 1 hour after collection from slaughterhouse. After fixation, immunohistochemistry was conducted on sliced ovary tissue containing various sizes of follicles by using LC3 antibody. As a result, LC3 signal was clearly detected in both cumulus and oocytes of various sizes of follicles. We also found ring shaped signal which represent autophagosome near oocyte membrane. Most of the signals in oocytes were localized nearby cellular membrane while evenly dispersed in cumulus cells. Therefore, this result suggests that autophagy occurs in porcine COCs (cumulus-oocyte complexes) at follicular stage.

Inhibition of Gastric Cancer Cell Cycle Progression by ${\gamma}$ -Tubulin Antisense Oligonucleotides

  • Hwang, Sun-Hee;Kim, Myung-Won;Park, Sang-Kyu;Noh, Jung-Woo;Han, In-Seob
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.5
    • /
    • pp.876-879
    • /
    • 2001
  • ${\gamma}$ -Tubulin is an essential component involved in microtubule nucleation. The present work examined whether the fast proliferation of cancer cells can be retarded by the depletion of ${\gamma}$ -tubulin expression. Two different gastric cancer cell lines and one control cell line were treated with antisence oligonucleotides complementary to the messenger RNA of ${\gamma}$ -tubulin. The$[^3H]$ -thymidine incorporation in the two gastric cancer cell lines, SNU-1 and SNU-216, was dramatically reducd by treatment with the ${\gamma}$ -tubulin antisense oligonucleotides in a dosage-dependent manner. In contrast, the control cell line, NIH/3T3, showed no significant effect from the antisense oligonucleotides even at a high concentration. The ablation of ${\gamma}$ -tubulin expression in the tumor cells resulted in an altered DNA synthesis during mitosis and it decreased the cell progression. Accordingly, the use of antisense oligonucleotides may be an effective way of inhibiting the proliferation of human gastric cancers.

  • PDF

Deficiency of calpain-6 inhibits primary ciliogenesis

  • Kim, Bo Hye;Kim, Do Yeon;Oh, Sumin;Ko, Je Yeong;Rah, Gyuyeong;Yoo, Kyung Hyun;Park, Jong Hoon
    • BMB Reports
    • /
    • v.52 no.10
    • /
    • pp.619-624
    • /
    • 2019
  • The primary cilium is a microtubule-based structure projecting from a cell. Although the primary cilium shows no motility, it can recognize environmental stimuli. Thus, ciliary defects cause severe abnormalities called ciliopathies. Ciliogenesis is a very complex process and involves a myriad of components and regulators. In order to excavate the novel positive regulators of ciliogenesis, we performed mRNA microarray using starved NIH/3T3 cells. We selected 62 murine genes with corresponding human orthologs, with significantly upregulated expression at 24 h after serum withdrawal. Finally, calpain-6 was selected as a positive regulator of ciliogenesis. We found that calpain-6 deficiency reduced the percentage of ciliated cells and impaired sonic hedgehog signaling. It has been speculated that this defect might be associated with decreased levels of ${\alpha}-tubulin$ acetylation at lysine 40. This is the first study to report a novel role of calpain-6 in the formation of primary cilia.

Effect of Colchicine on the Growth and Gravitropic Response via Ethylene Production in Arabidopsis Roots

  • Kim, Seon Woong;Park, Arom;Ahn, Dong Gyu;Kim, Soon Young
    • Korean Journal of Plant Resources
    • /
    • v.31 no.6
    • /
    • pp.597-603
    • /
    • 2018
  • Inhibitory effect of colchicine on growth and gravitropic responses in Arabidopsis root was explored to find whether there was an involvement of ethylene production. It has been known that cytoskeleton components are implicated in sedimentation of statoliths to respond to gravitropism and growth. The root growth was inhibited by 25% and 40% over control for 8 hr treatment of colchicine at a concentration of $10^{-5}M$ and $10^{-7}M$, respectively. The roots treated with colchicine at the concentration of $10^{-7}M$ showed the same pattern as control in 3 hr, however, gravitropic response was decreased in the next 5 hr. The colchicine treatment at the concentration of $10^{-5}M$ inhibited the gravitropic response resulting in $60^{\circ}$ of curvature. In order to better understand the role of colchicine, the production of ethylene was measured with and without the treatment of colchicine. Colchicine increased the ethylene production by 20% when compared to control via the activation of ACC oxidase and ACC synthase activity. These results suggest that the inhibition of the growth and gravitropic responses of Arabidopsis roots by the treatment of colchicine could be attributed to the rearrangement of microtubule, and increase of ethylene production.

Transglutaminase 2 Promotes Autophagy by LC3 Induction through p53 Depletion in Cancer Cell

  • Kang, Joon Hee;Lee, Seon-Hyeong;Cheong, Heesun;Lee, Chang Hoon;Kim, Soo-Youl
    • Biomolecules & Therapeutics
    • /
    • v.27 no.1
    • /
    • pp.34-40
    • /
    • 2019
  • Transglutaminase 2 (TGase 2) plays a key role in p53 regulation, depleting p53 tumor suppressor through autophagy in renal cell carcinoma. We found that microtubule-associated protein 1A/1B-light chain 3 (LC3), a hallmark of autophagy, were tightly associated with the level of TGase 2 in cancer cells. TGase 2 overexpression increased LC3 levels, and TGase 2 knockdown decreased LC3 levels in cancer cells. Transcript abundance of LC3 was inversely correlated with level of wild type p53. TGase 2 knockdown using siRNA, or TGase 2 inhibition using GK921 significantly reduced autophagy through reduction of LC3 transcription, which was followed by restoration of p53 levels in cancer cells. TGase 2 overexpression promoted the autophagy process by LC3 induction, which was correlated with p53 depletion in cancer cells. Rapamycin-resistant cancer cells also showed higher expression of LC3 compared to the rapamycin-sensitive cancer cells, which was tightly correlated with TGase 2 levels. TGase 2 knockdown or TGase 2 inhibition sensitized rapamycin-resistant cancer cells to drug treatment. In summary, TGase 2 induces drug resistance by potentiating autophagy through LC3 induction via p53 regulation in cancer.

Kinesin-13, a Motor Protein, is Regulated by Polo-like Kinase in Giardia lamblia

  • Park, Eun-Ah;Kim, Juri;Shin, Mee Young;Park, Soon-Jung
    • Parasites, Hosts and Diseases
    • /
    • v.60 no.3
    • /
    • pp.163-172
    • /
    • 2022
  • Kinesin-13 (Kin-13), a depolymerizer of microtubule (MT), has been known to affect the length of Giardia. Giardia Kin-13 (GlKin-13) was localized to axoneme, flagellar tips, and centrosomes, where phosphorylated forms of Giardia polo-like kinase (GlPLK) were distributed. We observed the interaction between GlKin-13 and GlPLK via co-immunoprecipitation using transgenic Giardia cells expressing Myc-tagged GlKin-13, hemagglutinin-tagged GlPLK, and in vitro-synthesized GlKin-13 and GlPLK proteins. In vitro-synthesized GlPLK was demonstrated to auto-phosphorylate and phosphorylate GlKin-13 upon incubation with [γ-32P]ATP. Morpholino-mediated depletion of both GlKin-13 and GlPLK caused an extension of flagella and a decreased volume of median bodies in Giardia trophozoites. Our results suggest that GlPLK plays a pertinent role in formation of flagella and median bodies by modulating MT depolymerizing activity of GlKin-13.

N-retinylidene-N-retinylethanolamine degradation in human retinal pigment epithelial cells via memantine- and ifenprodil-mediated autophagy

  • Jae Rim Lee;Kwang Won Jeong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.5
    • /
    • pp.449-456
    • /
    • 2023
  • N-methyl-D-aspartate (NMDA) receptors are ionic glutamine receptors involved in brain development and functions such as learning and memory formation. NMDA receptor inhibition is associated with autophagy activation. In this study, we investigated whether the NMDA receptor antagonists, memantine and ifenprodil, induce autophagy in human retinal pigment epithelial cells (ARPE-19) to remove N-retinylidene-N-retinylethanolamine (A2E), an intracellular lipofuscin component. Fluorometric analysis using labeled A2E (A2E-BDP) and confocal microscopic examination revealed that low concentrations of NMDA receptor antagonists, which did not induce cytotoxicity, significantly reduced A2E accumulation in ARPE-19 cells. In addition, memantine and ifenprodil activated autophagy in ARPE-19 cells as measured by microtubule-associated protein 1A/1B-light chain3-II formation and phosphorylated p62 protein levels. Further, to understand the correlation between memantine- and ifenprodil-mediated A2E degradation and autophagy, autophagy-related 5 (ATG5) was depleted using RNA interference. Memantine and ifenprodil failed to degrade A2E in ARPE-19 cells lacking ATG5. Taken together, our study indicates that the NMDA receptor antagonists, memantine and ifenprodil, can remove A2E accumulated in cells via autophagy activation in ARPE-19 cells.

Elevated level of PLRG1 is critical for the proliferation and maintenance of genome stability of tumor cells

  • Hyunji Choi;Moonkyung Kang;Kee-Ho Lee;Yeon-Soo Kim
    • BMB Reports
    • /
    • v.56 no.11
    • /
    • pp.612-617
    • /
    • 2023
  • Pleiotropic regulator 1 (PLRG1), a highly conserved element in the spliceosome, can form a NineTeen Complex (NTC) with Prp19, SPF27, and CDC5L. This complex plays crucial roles in both pre-mRNA splicing and DNA repair processes. Here, we provide evidence that PLRG1 has a multifaceted impact on cancer cell proliferation. Comparing its expression levels in cancer and normal cells, we observed that PLRG1 was upregulated in various tumor tissues and cell lines. Knockdown of PLRG1 resulted in tumor-specific cell death. Depletion of PLRG1 had notable effects, including mitotic arrest, microtubule instability, endoplasmic reticulum (ER) stress, and accumulation of autophagy, ultimately culminating in apoptosis. Our results also demonstrated that PLRG1 downregulation contributed to DNA damage in cancer cells, which we confirmed through experimental validation as DNA repair impairment. Interestingly, when PLRG1 was decreased in normal cells, it induced G1 arrest as a self-protective mechanism, distinguishing it from effects observed in cancer cells. These results highlight multifaceted impacts of PLRG1 in cancer and underscore its potential as a novel anti-cancer strategy by selectively targeting cancer cells.

The Antitumor Potentials of Benzimidazole Anthelmintics as Repurposing Drugs

  • Deok-Soo Son;Eun-Sook Lee;Samuel E. Adunyah
    • IMMUNE NETWORK
    • /
    • v.20 no.4
    • /
    • pp.29.1-29.20
    • /
    • 2020
  • The development of refractory tumor cells limits therapeutic efficacy in cancer by activating mechanisms that promote cellular proliferation, migration, invasion, metastasis, and survival. Benzimidazole anthelmintics have broad-spectrum action to remove parasites both in human and veterinary medicine. In addition to being antiparasitic agents, benzimidazole anthelmintics are known to exert anticancer activities, such as the disruption of microtubule polymerization, the induction of apoptosis, cell cycle (G2/M) arrest, anti-angiogenesis, and blockage of glucose transport. These antitumorigenic effects even extend to cancer cells resistant to approved therapies and when in combination with conventional therapeutics, enhance anticancer efficacy and hold promise as adjuvants. Above all, these anthelmintics may offer a broad, safe spectrum to treat cancer, as demonstrated by their long history of use as antiparasitic agents. The present review summarizes central literature regarding the anticancer effects of benzimidazole anthelmintics, including albendazole, parbendazole, fenbendazole, mebendazole, oxibendazole, oxfendazole, ricobendazole, and flubendazole in cancer cell lines, animal tumor models, and clinical trials. This review provides valuable information on how to improve the quality of life in patients with cancers by increasing the treatment options and decreasing side effects from conventional therapy.

Effects of Polychlorinated Biphenyls on the Expression of KAP3 Gene Involved in the 'Critical Period' of Rat Brain Sexual Differentiation

  • Lee, Chae-Kwan;Kang, Han-Seung;June, Bu-ll;Lee, Byung-Ju;Moon, Deog-Hwan;Kang, Sung-Goo
    • Animal cells and systems
    • /
    • v.5 no.4
    • /
    • pp.327-331
    • /
    • 2001
  • There is a critical developmental period during which brain sexual differentiation proceeds irreversibly under the influence of gonadal hormone. Recently, kinesin superfamily-associated protein 3 (KAP3) gene expressed during the 'critical period' of rat brain differentiation was identified by us (Choi and Lee, 1999). KAP3 functions as a microtubule-based motor that transports membranous organelles anterogradely in cells, including neurons (Yamazaki et al., 1996). mRNA level of KAP3 gene markedly increased before the initiation of puberty. Neonatal treatment of estrogen clearly inhibited the prepubertal increase in KAP3 mRNA level (Choi and Lee, 1999). In the present study, we aimed to investigate the effects of polychlorinated biphenyls (PCBs), as endocrine disruptors (EDs) on the expression of KAP3 gene during the 'critical period' of rat brain development. In our data, PCBs significantly decreased the expression of KAP3 gene in the fetal (day 17) and the neonatal (day 6 after birth in) male and female rat brains. The body weight and the breeding ability were significantly decreased in the PCBs-exposed rats compared with the control. These results showed that PCBs affect the transcriptional level of brain sexual differentiation related gene, KAP3, in the fetal and the neonatal rat brains. The maternal exposure to the PCBs may lead to toxic response in embryonic brain sexual differentiation and breeding ability after sexual maturation. This study indicates that KAP3 gene may be useful as a gene marker to analyze the molecular mechanism of toxic response in the animal brain development and sexual maturation exposed to PCBs.

  • PDF