Browse > Article
http://dx.doi.org/10.3347/kjp.2022.60.3.163

Kinesin-13, a Motor Protein, is Regulated by Polo-like Kinase in Giardia lamblia  

Park, Eun-Ah (Department of Environmental Medical Biology and Institute of Tropical Medicine, Yonsei University College of Medicine)
Kim, Juri (Department of Environmental Medical Biology and Institute of Tropical Medicine, Yonsei University College of Medicine)
Shin, Mee Young (Department of Environmental Medical Biology and Institute of Tropical Medicine, Yonsei University College of Medicine)
Park, Soon-Jung (Department of Environmental Medical Biology and Institute of Tropical Medicine, Yonsei University College of Medicine)
Publication Information
Parasites, Hosts and Diseases / v.60, no.3, 2022 , pp. 163-172 More about this Journal
Abstract
Kinesin-13 (Kin-13), a depolymerizer of microtubule (MT), has been known to affect the length of Giardia. Giardia Kin-13 (GlKin-13) was localized to axoneme, flagellar tips, and centrosomes, where phosphorylated forms of Giardia polo-like kinase (GlPLK) were distributed. We observed the interaction between GlKin-13 and GlPLK via co-immunoprecipitation using transgenic Giardia cells expressing Myc-tagged GlKin-13, hemagglutinin-tagged GlPLK, and in vitro-synthesized GlKin-13 and GlPLK proteins. In vitro-synthesized GlPLK was demonstrated to auto-phosphorylate and phosphorylate GlKin-13 upon incubation with [γ-32P]ATP. Morpholino-mediated depletion of both GlKin-13 and GlPLK caused an extension of flagella and a decreased volume of median bodies in Giardia trophozoites. Our results suggest that GlPLK plays a pertinent role in formation of flagella and median bodies by modulating MT depolymerizing activity of GlKin-13.
Keywords
Giardia lamblia; GlKin-13; GlPLK; flagella; median body;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Maia AR, Garcia Z, Kabeche L, Barisic M, Maffini S, Macedo-Ribeiro S, Cheeseman IM, Compton DA, Kaverina I, Maiato H. Cdk1 and Plk1 mediate a CLASP2 phospho-switch that stabilizes kinetochore-microtubule attachments. J Cell Biol 2012; 199: 285-301. http://doi.org/10.1083/jcb.201203091   DOI
2 Park EA, Kim J, Shin MY, Park SJ. A polo-like kinase modulates cytokinesis and flagella biogenesis in Giardia lamblia. Parasite Vectors 2021; 14: 182. http://doi.org/10.1186/s13071-021-04687-5   DOI
3 McInally SG, Hagen KD, Nosala C, Williams J, Nguyen K, Booker J, Jones K, Dawson SC. Robust and stable transcriptional repression in Giardia using CRISPRi. Mol Biol Cell 2019; 30: 119-130. http://doi.org/10.1091/mbc.E18-09-0605   DOI
4 Keister DB. Axenic culture of Giardia lamblia in TYI-S-33 medium supplemented with bile. Trans R Soc Trop Med Hyg 1983; 77: 487-488. http://doi.org/10.1016/0035-9203(83)90120-7   DOI
5 Kim J, Lee HY, Lee MA, Yong TS, Lee KH, Park SJ. Identification of α-11 giardin as a flagellar and surface component of Giardia lamblia. Exp Parasitol 2013; 135: 227-233. http://doi.org/10.1016/j.exppara.2013.07.010   DOI
6 Nash TE. Unraveling how Giardia infections cause disease. J Clin Invest 2013; 123: 2346-2347. http://doi.org/10.1172/JCI69956   DOI
7 Akhmanova A, Steinmetz MO. Tracking the ends: a dynamic protein network controls the fate of microtubule tips. Nat Rev Mol Cell Biol 2008; 9: 309-322. http://doi.org/10.1038/nrm2369   DOI
8 Kim J, Nagami S, Lee KH, Park SJ. Characterization of microtubule-binding and dimerization activity of Giardia lamblia end-binding 1 protein. PLoS One 2014; 9: e97850. http://doi.org/10.1371/journal.pone.0097850   DOI
9 Wimbish RT, DeLuca JG. Hec1/Ndc80 tail domain function at the kinetochore-microtubule interface. Front Cell Dev Biol 2020; 8: 43. http://doi.org/10.3389/fcell.2020.00043   DOI
10 Zhang X, Ems-McClung SC, Walczak CE. Aurora A phosphorylates MCAK to control Ran-dependent spindle bipolarity. Mol Biol Cell 2008; 19: 2752-2765. http://doi.org/10.1091/mbc.E08-02-0198   DOI
11 Nohynkova E, Tumova P, Kulda J. Cell division of Giardia intestinalis: Flagellar developmental cycle involves transformation and exchange of flagella between mastigonts of a diplomonad cell. Eukaryotic Cell 2006; 5: 753-761. http://doi.org/10.1128/EC.5.4.753-761.2006   DOI
12 Sanhaji M, Friel CT, Kreis N, Kramer A, Martin C, Howard J, Strebhardt K, Yuan J. Functional and spatial regulation of mitotic centromere-associated kinesin by cyclin-dependent kinase 1. Mol Cell Biol 2010; 30: 2594-2607. http://doi.org/10.1128/MCB.00098-10   DOI
13 Cho CC, Su LH, Huang YC, Pan YJ, Sun CH. Regulation of a Myb transcription factor by cyclin-dependent kinase 2 in Giardia lamblia. J Biol Chem 2012; 287: 3733-3750. http://doi.org/10.1074/jbc.M111.298893   DOI
14 Shao H, Huang Y, Zhang L, Yuan K, Chu Y, Dou Z, Jin C, Garcia-Barrio M, Liu X, Yao X. Spatiotemporal dynamics of Aurora BPLK1-MCAK signaling axis orchestrates kinetochore bi-orientation and faithful chromosome segregation. Sci Rep 2015; 5: 12204. http://doi.org/10.1038/srep12204   DOI
15 Moores CA, Milligan RA. Visualisation of a kinesin-13 motor on microtubule end mimics. J Mol Biol 2008; 377: 647-654. http://doi.org/10.1016/j.jmb.2008.01.079   DOI
16 Vasudevan KK, Jiang Y, Lechtreck KF, Kushida Y, Alford LM, Sale WS, Hennessey T, Gaertig J. Kinesin-13 regulates the quantity and quality of tubulin inside cilia. Mol Biol Cell 2015; 26: 478-494. http://doi.org/10.1091/mbc.E14-09-1354   DOI
17 Lee T, Langford KJ, Askham JM, Bruning-Richardson A, Morrison EE. MCAK associates with EB1. Oncogene 2008; 183: 1223-1333. https://doi.org/10.1038/sj.onc.1210867   DOI
18 Dragestein KA, van Cappellen WA, van Haren J, Tsibidis GD, Akhmanova A, Knoch TA, Grosveld F, Galjart N. Dynamic behavior of GFP-CLIP-170 reveals fast protein turnover on microtubule plus ends. J Cell Biol 2008; 180: 729-737. http://doi.org/10.1083/jcb.200707203   DOI
19 Sanhaji M, Ritter A, Belsham HR, Friel CT, Roth S, Louwen F, Yuan J. Polo-like kinase 1 regulates the stability of the mitotic centromere-associated kinesin in mitosis. Oncotarget 2014; 5: 3130-3144. http://doi.org/10.18632/oncotarget.1861   DOI
20 Ritter A, Sanhaji M, Steinhauser K, Roth S, Louwen F, Yuan J. The activity regulation of the mitotic centromere-associated kinesin by Polo-like kinase 1. Oncotarget 2015; 6: 6641-6655. http://doi.org/10.18632/oncotarget.2843   DOI
21 Piao T, Luo M, Wang L, Guo Y, Li D, Li P, Snell WJ, Pan J. A microtubule depolymerizing kinesin functions during both flagellar disassembly and flagellar assembly in Chlamydomonas. Proc Natl Acad Sci USA 2009; 106: 4713-4718. http://doi.org/10.1073/pnas.0808671106   DOI
22 Tanenbaum ME, Medema RH, Akhmanova A. Regulation of localization and activity of the microtubule depolymerase MCAK. Bioarchitecture 2011; 1: 80-87. http://doi.org/10.4161/bioa.1.2.15807   DOI
23 Blaineau C, Tessier M, Dubessay P, Tasse L, Crobu L, Pages M, Bastien P. A novel microtubule-depolymerizing kinesin involved in length control of a eukaryotic flagellum. Curr Biol 2007; 17: 778-782. http://doi.org/10.1016/j.cub.2007.03.048   DOI
24 Kim J, Shin MY, Park SJ. RNA-sequencing profiles of cell cycle-related genes upregulated during the G2-phase in Giardia lamblia. Korean J Parasitol 2019; 57: 185-189. http://doi.org/10.3347/kjp.2019.57.2.185   DOI
25 Gourguechon S, Cande WZ. Rapid tagging and integration of genes in Giardia intestinalis. Eukary Cell 2011; 10; 142-145. http://doi.org/10.1128/EC.00190-10   DOI
26 Carpenter ML, Cande WZ. Using morpholinos for gene knockdown in Giardia intestinalis. Eukaryot Cell 2009; 8: 916-919. http://doi.org/10.1128/EC.00041-09   DOI
27 Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A. Fiji: an open source platform for biological image analysis. Nat Methods 2012; 9: 676-682. http://doi.org/10.1038/nmeth.2019   DOI
28 Manning AL, Ganem NJ, Bakhoum SF, Wagenbach M, Wordeman L, Compton DA. The Kinesin-13 proteins Kif2a, Kif2b, and Kif2c/MCAK have distinct roles during mitosis in human cells. Mol Biol Cell 2007; 18: 2970-2979. http://doi.org/10.1091/mbc.E07-02-0110   DOI
29 Chan KY, Matthews KR, Ersfeld K. Functional characterisation and drug target validation of a mitotic kinesin-13 in Trypanosoma brucei. PLoS Pathog 2010; 6: e1001050. http://doi.org/10.1371/journal.ppat.1001050   DOI
30 Wickstead B, Carrington JT, Gluenz E, Gull K. The expanded kinesin-13 repertoire of Trypanosomes contains only one mitotic kinesin indicating multiple extra-nuclear roles. PLoS One 2010; 5: e15020. http://doi.org/10.1371/journal.pone.0015020   DOI
31 Kim J, Sim S, Kim J, Song K, Yong TS, Park SJ. Giardia lamblia EB1 is a functional homolog of yeast Bim1p that binds to microtubules. Parasitol Int 2008; 57: 465-471. http://doi.org/10.1016/j.parint.2008.05.008   DOI
32 Elmendorf HG, Dawson SC, McCaffery JM. The cytoskeleton of Giardia lamblia. Int J Parasitol 2003; 33: 3-28. http://doi.org/10.1016/S0020-7519(02)00228-X   DOI
33 Desai A, Mitchison TJ. Microtubule polymerization dynamics. Ann Rev Cell Develop Biol 1997; 13: 83-117. http://doi.org/10.1146/annurev.cellbio.13.1.83   DOI
34 Dawson SC, Sagolla MS, Mancuso JJ, Woessner DJ, House SA, FritzLaylin L, Cande WZ. Kinesin-13 regulates flagellar, interphase, and mitotic microtubule dynamics in Giardia intestinalis. Eukaryot Cell 2007; 6: 2354-2364. http://doi.org/10.1128/EC.00128-07   DOI
35 Kim J, Park SJ. Roles of end-binding 1 protein and gamma-tubulin small complex in cytokinesis and flagella formation of Giardia lamblia. Microbiologyopen 2019; 8: e00748. http://doi.org/10.1002/mbo3.748   DOI
36 Zhang X, Lan W, Ems-McClung SC, Stukenberg PT, Walczak CE. Aurora B phosphorylates multiple sites on mitotic centromere-associated kinesin to spatially and temporally regulate its function. Mol Biol Cell 2007; 18: 3264-3276. http://doi.org/10.1091/mbc.E07-01-0086   DOI
37 Kim J, Lee HY, Lee KH, Park SJ. Phosphorylation of serine 148 in Giardia lamblia end-binding 1 protein is important for cell division. J Eukaryot Microbiol 2017; 64: 464-480. http://doi.org/10.1111/jeu.12384   DOI
38 Davids BJ, Williams S, Lauwaet T, Palanca T, Gillin FD. Giardia lamblia aurora kinase: a regulator of mitosis in a binucleate parasite. Int J Parasitol 2008; 38: 353-369. http://doi.org/10.1016/j.ijpara.2007.08.012   DOI
39 Gourguechon S, Holt LJ, Cande WZ. The Giardia cell cycle progresses independently of the anaphase-promoting complex. J Cell Sci 2013; 126: 2246-2255. http://doi.org/10.1242/jcs.121632   DOI