• Title/Summary/Keyword: Microstructure properties

Search Result 4,061, Processing Time 0.03 seconds

Effects of Mg and Si on Microstructure and Mechanical Properties of Al-Mg Die Casting Alloy (Al-Mg 계 다이캐스팅 합금의 미세조직 및 기계적 성질에 미치는 Mg 및 Si의 영향)

  • Cho, Jae-Ik;Kim, Cheol-Woo
    • Journal of Korea Foundry Society
    • /
    • v.32 no.5
    • /
    • pp.219-224
    • /
    • 2012
  • The effects of Mg and Si contents on the microstructure and mechanical properties in Al-Mg alloy (ALDC6) were investigated. The results showed that phase fraction and size of $Mg_2Si$ and $Al_{15}(Fe,Mn)_3Si_2$ phase in the microstructure of Al-Mg alloy were increased as the Mg and Si contents were raised from 2.5 to 3.5 wt%. With Si content of 1.5 wt%, freezing range of the alloy was significantly reduced and solidification became more complex during the final stage of solidification. While there was no significant influence of Mg contents on mechanical properties, Si contents up to 1.5 wt%, strongly affected the mechanical properties. Especially elongation was reduced by about a half with more than 1.0 wt%Si in the alloy. The bending and impact strength were decreased with increased amount of Si in the alloy, as well. The lowered mechanical properties are because of the growth of particle shaped coarse $Mg_2Si$ phase and precipitation of the needle like $\beta$-AlFeSi in the microstructure at the last region to solidify due to presence of excess amount of Si in the alloy.

The Changes of Microstructure, Morphology, and Mechanical Properties of Solvent Treated PET POY (Partially Oriented Yarn) (폴리에스테르 부분배향사의 용매처리에 따른 내부구조 및 인장성질의 변화)

  • Shin, Hae Won;Ryu, Hyo Seon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.17 no.1
    • /
    • pp.63-75
    • /
    • 1993
  • Partially oriented polyester yarn (PET POY) was treated in the unrestrained state using various solvents at different temperatures. Interactions between PET POY & solvents were estimated by the changes of microstructure, morphology and mechanical properties. The correlation between the changes of microstructure & morphology and the changes of mechanical properties was also studied. TCE, Dioxane, O-DCB, DMF, and BA were found to be active solvents, while Iso-AA and water were found to be weak solvents. PET POY was affected mainly by the solvents when treated with active solvents and affected mainly by heat when treated with weak solvents. Changes by the solvent treatment in microstructure and morphology were : an increase in crystallinity, a change in birefringence, a shrinkage in length, and a change in DSC curve. As for the changes in mechanical properties, findings in the PET POY when treated with solvents were : a decrease in stress-at-break, a change in yield stress, an increase in strain-at-break & yield strain, and a decrease in initial modulus. Changes in microstructure and morphology directly affected the mechanical properties.

  • PDF

Microstructure and Mechanical Properties of Hot-Stamped 3.2t Boron Steels according to Water Flow Rate in Direct Water Quenching Process (3.2t 보론강 판재 직수냉각 핫스탬핑시 냉각수 유량에 따른 미세조직 및 기계적 특성)

  • Park, Hyeon Tae;Kwon, Eui Pyo;Im, Ik Tae
    • Korean Journal of Materials Research
    • /
    • v.30 no.12
    • /
    • pp.693-700
    • /
    • 2020
  • Direct water quenching technique can be used in hot stamping process to obtain higher cooling rate compared to that of the normal die cooling method. In the direct water quenching process, setting proper water flow rate in consideration of material thickness and the size of the area directly cooled in the component is important to ensure uniform microstructure and mechanical properties. In this study, to derive proper water flow rate conditions that can achieve uniform microstructure and mechanical properties, microstructure and hardness distribution in various water flow rate conditions are measured for 3.2 mm thick boron steel sheet. Hardness distribution is uniform under the flow condition of 1.5 L/min or higher. However, due to the lower cooling rate in that area, the lower flow conditions result in a drastic decrease in hardness in some areas in the hot-stamped part, resulting in low martensite fraction. From these results, it is found that the selection of proper water flow rate is an important factor in hot stamping with direct water quenching process to ensure uniform mechanical properties.

Microstructural modelling of the elastic properties of tricalcium silicate pastes at early ages

  • Do, Huy Q.;Bishnoi, Shashank;Scrivener, Karen L.
    • Computers and Concrete
    • /
    • v.16 no.1
    • /
    • pp.125-140
    • /
    • 2015
  • This paper describes the numerical calculation of elastic properties of a simulated microstructure of cement paste from very early age, when most previous models fail to give accurate results. The development of elastic properties of tricalcium silicate pastes was calculated by discretising a numerical resolution-free 3D vector microstructure to a regular cubic mesh. Due to the connections formed in the microstructure as an artefact of the meshing procedure, the simulated elastic moduli were found to be higher than expected. Furthermore, the percolation of the solids was found to occur even before hydration started. A procedure to remove these artefacts, on the basis of the information available in the vector microstructures was developed. After this correction, a better agreement of the experimental results with calculations was obtained between 20% and 40% hydration. However, percolation threshold was found to be delayed significantly. More realistic estimates of percolation threshold were obtained if either flocculation or a densification of calcium silicate hydrate with hydration was assumed.

Characterization of Microstructure and Mechanical Properties of Micro-alloyed Cold Forging Steel and Product (냉간단조용 비조질강 및 성형품의 미세조직과 기계적 특성분석)

  • Suh D.W.;Lee Y.S.;Kwon Y.N.;Lee J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.409-412
    • /
    • 2004
  • Microstructures and mechanical properties of microalloyed cold forging steel and cold forged prototype automobile part are characterized. The work hardening according to the increase of plastic strain plays a major role in increasing the tensile strength of microalloyed cold forging steel during cold forming. On the other hand, inhomogeneous distribution of plastic strain causes variations in microstructure and mechanical properties. The relation between inhomogeneous distribution of plastic strain and variations in microstructure and mechanical properties is discussed. The variation of mechanical property in cold forged automobile part is analyzed using quantitative evaluation of plastic strain from finite element method.

  • PDF

Hybrid Microstructure and Mechanical Properties of HRS Processed SUS316L and Titanium Materials

  • Fujiwara, Hiroshi;Ohta, Koichi;Noro, Atsushi;Ameyama, Kei
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.540-541
    • /
    • 2006
  • SUS316L stainless steel, commercial pure Titanium and Ti-6Al-4V alloy powders applied by Mechanical Milling (MM) process are sintered by Hot Roll Sintering (HRS) process. Microstructure and mechanical properties of those HRS materials is investigated. The microstructures of materials produced by HRS process consist of fine grains and work-hardened structure, that is, the hybrid microstructure. Tensile test of the HRS material demonstrated the good mechanical properties. These results show that the HRS process is very effective to the improvement of mechanical properties in the SUS316L stainless steel, commercial pure Titanium and Ti-6Al-4V alloy.

  • PDF

Microstructure and Varistor Properties of ZPCCAE Ceramics with Erbium

  • Nahm, Choon-Woo;Heo, Jae-Seok;Lee, Geun-Hyung
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.4
    • /
    • pp.213-216
    • /
    • 2014
  • The microstructure and varistor properties of ZPCCAE ($ZnO-Pr_6O_{11}-CoO-Cr_2O_3-Al_2O_3-Er_2O_3$) ceramics were investigated with different erbium amounts. Analysis of the microstructure indicated that the ceramics consisted of ZnO grains as a bulk phase, and intergranular layers (mixture of $Pr_6O_{11}$ and $Er_2O_3$) as a minor secondary phase. With the increase of the doped erbium amount, the densities of sintered pellets increased from 5.63 to $5.82g/cm^3$, and the average grain size decreased from 9.0 to $5.7{\mu}m$. The increase of the doped erbium amount increased the breakdown field from 2,649 to 5,074 V/cm, and the nonlinear coefficient from 27.6 to 39.1. It was found that in the range of 0.25 to 0.5 mol%, the doped erbium had little effect on the microstructure and electrical properties.

Evaluation of Homogeneous Ultra-fine Grain Refinements via Equal Channel Angler Pressing Process (등통로각압축공정을 통한 결정립의 균질한 초미세립화에 대한 고찰)

  • Kim, W.;Lee, H.H.;Seo, S.J.;Lee, J.K.;Yoon, T.S.;Kim, H.S.
    • Transactions of Materials Processing
    • /
    • v.27 no.4
    • /
    • pp.222-226
    • /
    • 2018
  • Severe plastic deformation (SPD) is a promising method for drastically enhancing the mechanical properties of the materials by grain refinement of metallic materials. However, inhomogeneous deformation during the SPD process results in the inhomogeneous microstructure of the SPD-processed material. We manufactured cylindrical copper specimens of 42 mm in diameter with ultrafine grains (UFG) using an equal channel angular pressing (ECAP) to figure out the relationship between homogeneous microstructure and the number of the processing passes. Two specimens, which are ECAP-processed 4 times (4pass) and 6 times (6pass) each with Route Bc, are prepared for comparison of mechanical properties and microstructure. The results show that the mechanical properties of the two specimens (4pass and 6pass) are similar. Moreover, both the specimens show highly enhanced mechanical properties. The 4pass specimen, however, shows inhomogeneity in hardness distribution, while the 6pass specimen shows a homogeneous distribution. Microstructure analysis reveals that the 4pass specimen has an inhomogeneous microstructure with incompletely refined grain structure. This inhomogeneity of the 4pass specimen could be explained by the circumferential rotation during ECAP process.

Optimal Die Design for Uniform Microstructure in Hot Extruded Product (열간압출품의 미세조직 균일화를 위한 최적 금형설계)

  • 이상곤;고대철;류경희;이선봉;김병민
    • Transactions of Materials Processing
    • /
    • v.8 no.5
    • /
    • pp.471-481
    • /
    • 1999
  • The properties of deformed products are generally dependent upon the distribution of microstureture. It is, therefore, necessary to make the distribution of microstureture uniform in order to achieve the best balance of properties in the final product. This is often a demanding task, even for conventional materials. It is become essential to achieving mechanical integrity and a desired combination of microstructure and properties. The objective mechanical integrity and a desired combination of microsttucture and properties. The objective of this study is to design the optimal die profile which can yield more uniform microstructure in hot extruded product. The microstructure evolution, such as dynamic and static recrystallization as well as grain growth, is investigated using the program com-bined with yada and Senuma's empirical equations and rigid-thermoviscoplastic finite element method. The die profile of hot extrusion is represented by Bezier-curve to define all available profile. In order to obtain the optimal die profile which yields uniform microstructure in the product the FPS(Flexible Polyhedron Search) method is applied to the present study. To validate the result of present study the experimental hot extrusion is performed and the result is compared with that of simulation.

  • PDF

Effect of Si on the Microstructure and Mechanical Properties of Ti-Al-Si-C-N Coatings (Si 함량에 따른 Ti-Al-Si-C-N 코팅막의 미세구조와 기계적 특성의 변화에 관한 연구)

  • Hong, Young-Su;Kwon, Se-Hun;Kim, Kwang-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.2
    • /
    • pp.73-78
    • /
    • 2009
  • Quinary Ti-Al-Si-C-N films were successfully synthesized on SUS 304 substrates and Si wafers by a hybrid coating system combining an arc ion plating technique and a DC reactive magnetron sputtering technique. In this work, the effect of Si content on the microstructure and mechanical properties of Ti-Al-C-N films were systematically investigated. It was revealed that the microstructure of Ti-Al-Si-C-N coatings changed from a columnar to a nano-composite by the Si addition. Due to the nanocomposite microstructure of Ti-Al-Si-C-N coatings, the microhardness of The Ti-Al-Si-C-N coatings significantly increased up to 56 GPa. In addition the average friction coefficients of Ti-Al-Si-C-N coatings were remarkably decreased with Si addition. Therefore, Ti-Al-Si-C-N coatings can be applicable as next-generation hard-coating materials due to their improved hybrid mechanical properties.