• Title/Summary/Keyword: Microstructure properties

Search Result 4,061, Processing Time 0.031 seconds

Hydrogen Reduction Behavior of Al2O3/CuO Powder Mixtures Prepared from Different Raw Powders and Their Microstructural Characteristics (원료분말에 따른 Al2O3/CuO 분말혼합체의 수소환원 거동 및 미세조직 특성)

  • Oh Sung-Tag;Kim Jung-Nam;Kang Kae-Myung
    • Korean Journal of Materials Research
    • /
    • v.14 no.10
    • /
    • pp.696-700
    • /
    • 2004
  • The reduction behavior of $Al_{2}O_3/CuO$ powder mixtures, prepared from $Al_{2}O_3/CuO$ or $Al_{2}O_3/Cu-nitrate$, was investigated by using thermogravimetry and hygrometry. The powder characteristics were examined by BET, XRD and TEM. Also, the influence of powder characteristics on the microstructure and properties of hot-pressed composites was analyzed. The formation mechanism of nano-sized Cu dispersions was explained based on the powder characteristics and reduction kinetics of oxide powders. In addition, the dependence of the microstructure and mechanical properties of hot-pressed composites on powder characteristics is discussed in terms of the initial size and distribution of Cu particles. The practical implication of these results is that an optimum processing condition for the design of homogeneous microstructure and required properties can be established.

Microstructure and Characterisistics of Near Surface of $As^+$Ion Implanted Si (A$s^+$이온을 주입시킨 Si 표면부 미세구조와 특성)

  • Shin, D.W.;Choi, C.;Park, C.G.;Kim, J.C.
    • Korean Journal of Materials Research
    • /
    • v.2 no.3
    • /
    • pp.213-219
    • /
    • 1992
  • The microstructure, dopant distribution and electrical properties of the $As^{+}$ ion-implanted surface layer differ significantly depending on the methods of subsequent heat treatments, furnace annealing(FA) and rapid thermal annealing(RTA). The amorphous layer created by ion implantation was recrystallized during the thermal annealing through solid phase epitaxial (SPE) growth. The dopant distribution and electrical properties are discussed with respect to the TEM cross-sectional microstructure observed. The microstructure, dopant distribution and electrical properties depended upon especially the annealing time of the heat treatment.

  • PDF

Microstructure and Mechanical Properties of Squeeze Cast AZ91 Mg/Al Borate Whisker Composites (용탕단조법으로 제조된 AZ91 Mg/Al Borate 휘스커 복합재료의 미세조직 및 기계적 특성)

  • Kim, Kwang-Chun;Cho, Young-Su;Lee, Sung-Hak;Park, Ik-Min
    • Journal of Korea Foundry Society
    • /
    • v.16 no.6
    • /
    • pp.537-549
    • /
    • 1996
  • This study aims at investigating the correlation of microstructure and mechanical properties of the AZ91 Mg/Al borate whisker composites fabricated by squeeze csting technique with a variation of applied pressure. Microstructure observation and in-situ fracture tests were conducted on the composites to identify the microfracture process. Detailed microstructural analyses indicated that the grain refinement could be achieved with applied pressure and the little change in volume fraction on reinforcing whiskers could be carried out. It was also found clearly from in-situ observation of crack initiation and propagation that in the composite processed by the lower applied pressure, microcracks were initiated earily at whisker/matrix interfaces, thereby resulting in the drop in strength. In the composite processed by the higher applied pressure, on the other hand, planar slip lines were well developed in the matrix, and then propagated through whiskers without whisker/matrix decohesion. Thus, the effect of the applied pressure on microstructure and mechanical properties can be explained by grain refinement, increased amounts of reinforcements, and improvement of whisker/matrix interfacial strength as the applied pressure in increased.

  • PDF

A Study on Mechanical Properties and Microstructure of Local-Hardening Heat-Treated Automotive Panel (국부 경화 열처리된 차체 부품의 기계적 성질과 미세조직에 관한 연구)

  • Lee, Jae Ho;Jeong, Woo Chang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.6
    • /
    • pp.301-308
    • /
    • 2010
  • A steel with chemical composition, 0.22% C, 0.25% Si, 1.26% Mn, 0.22% Cr, 0.04% Ti, 0.0042% B, and a microstructure of ferrite and spheroidized cementite has been press-formed to automotive center pillar followed by local-hardening heat-treatment. Hardness, tensile properties, fractography, microstructure and surface roughness of local-hardening heat-treated automotive center pillar have been examined. The directly heated and quenched area had fully martensitic structure with Vickers hardenss in the range of 500 to 510. The heat affected area close to the directly heated area showed dual-phase structure of ferrite and martensite. The width of the heat-treated and heat-affected areas after the local-hardening heat treatment was ranging from 32 mm to 50 mm. The surface of the local-hardening heat-treated center pillar revealed some temper color as a consequence of the oxidation during the heat treatment, but the surface roughness was not affected by the local-hardening heat treatment.

Microstructure and Mechanical Properties of Cu-Ni-Si Alloy Deformed by Differential Speed Rolling (이속압연에 의해 가공된 Cu-Ni-Si 합금의 미세 조직 및 기계적 성질)

  • Lee, Seong-Hee;Han, Seung Zeon
    • Korean Journal of Materials Research
    • /
    • v.26 no.1
    • /
    • pp.8-12
    • /
    • 2016
  • Effects of conventional rolling(CR) and differential speed rolling(DSR) on the microstructure and mechanical properties of Cu-Ni-Si alloy were investigated in detail. The copper alloy with thickness of 3 mm was rolled to 50 % reduction at ambient temperature without lubricant with a differential speed ratio of 2:1. The conventional rolling in which the rolling speed of upper and lower rolls is identical was performed under identical rolling conditions. The shear strain introduced by the CR showed positive values at positions of upper roll side and negative values at positions of lower roll side. However, it showed zero or positive values at all positions for the samples rolled by the DSR. The microstrucure and texture development of the as-rolled copper alloy did not show any significant difference between CR and DSR. The tensile strength of the DSR processed specimen was larger than that of the CR processed specimen. The effects of rolling methods on the microstructure and mechanical properties of the as-rolled copper alloy are discussed in terms of the shear strain.

Microstructure and Mechanical Properties of Ti-6Al-4V Alloy Processed by Metal Injection Molding (금속분말 사출성형된 Ti-6Al-4V 합금의 미세조직 및 기계적 물성)

  • Kim, M.J.;Baek, S.H.;Yoon, D.K.;Lee, E.H.;Kim, J.H.;Ko, Y.G.
    • Transactions of Materials Processing
    • /
    • v.29 no.5
    • /
    • pp.251-256
    • /
    • 2020
  • The purpose of this study is to investigate the effect of sintering condition on the microstructure evolution and tensile properties of the Ti-6Al-4V alloy sample processed by metal injection molding (MIM) in terms of the sizes of the alpha morphology and pore found in the matrix. For this purpose, a series of MIM were conducted on this sample at various sintering temperatures ranging from 1173 to 1373 K for three hours followed by furnace cooling, observed by the scanning electron microscopy. The microstructures sintered in this study showed that, with increasing sintering temperature over beta transus temperature, the transformation of the equiaxed alpha into transformed beta was attained while the size of pores would tend to decrease. Thus, the strength remained unchanged significantly in the tension while ductility increased to some extent as sintering temperature increased. Such mechanical behavior would be explained in relation to the microstructure evolution of the Ti-6Al-4V sample via the MIM.

The Effects of Surface Oxidation Occurring during Delivery from an Annealing Furnace to a Water Bath on the Microstructure and Tensile Properties of TWIP Steel (소둔로에서 수욕으로 이송 중 발생한 표면 산화가 TWIP 강의 미세조직과 인장 성질에 미치는 영향)

  • Oh, Seon-Keun;Lee, Young-Kook
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.33 no.2
    • /
    • pp.57-64
    • /
    • 2020
  • In the present study, we investigated whether the surface oxidation of C-bearing TWIP steel ℃curs in the air during specimen delivery from an annealing furnace to a water bath and how the microstructure and tensile properties are influenced by surface oxidation. A cold-rolled Fe-18Mn-0.6 (wt%) steel was exposed in the air for 5 s after annealing at various temperatures (750℃, 850℃ and 1000℃) for 10 min in a vacuum, and then water-quenched. For comparison, another specimen, which had been quartz-sealed in a vacuum, was annealed at 1000℃ for 10 min and immediately water-quenched without exposure to air. The 750℃ and 850℃-annealed specimens and the quartz-sealed specimen showed a γ-austenite single phase in the entire specimen due to negligible surface oxidation. However, the 1000℃-annealed specimen exhibited a dual-phase microstructure consisting of ε-martensite and γ-austenite at the sub-surface due to decarburization. Whereas the specimens without decarburization revealed high elongations of 70-80%, the decarburized specimen exhibited a low elongation of ~40%, indicating premature failure due to cracking inside the decarburized layer with ε-martensite and γ-austenite.

Effects of Processing Conditions on Microstructure and Mechanical Properties of Mg Alloy Deformed by Differential Speed Rolling (이속 압연된 마그네슘 합금의 미세조직 및 기계적 물성에 미치는 가공 변수의 영향)

  • Yang, H.W.;Ko, Y.G.
    • Transactions of Materials Processing
    • /
    • v.27 no.1
    • /
    • pp.12-17
    • /
    • 2018
  • This paper outlines the research findings on the microstructure and mechanical properties of AZ31 Mg alloy fabricated by differential speed rolling (DSR) with respect to processing variables such as temperature, roll speed ratio (RSR), and deformation route. The resultant microstructure of the sample, deformed by 2-pass DSRs at 473 K, comprised finer grains with more uniform distribution than those at 573 and 623 K. This was due to active recrystallization, which was expected to appear during DSR at temperatures higher than 573 K. When the sample was deformed via DSR with RSR of 1:4 for the upper and lower rolls at 453 K, the values of yield and ultimate tensile strength were observed to be higher than their counterpart with RSR of 1:1. The application of sample rotation around the longitudinal axis would give rise to an excellent combination of tension strength (~330 MPa) and ductility (~20 %) at ambient temperatures. This is discussed based on its uniform fine grained structure and the softening of basal texture.

Microstructure and Magnetic Properties of Nd-Fe-B Sintered Magnet with the Variation of Particle Size (분말입도에 따른 Nd-Fe-B 소결자석의 미세조직 변화 및 자기적 특성)

  • Shin, Dongwon;Kim, Dong-Hwan;Park, Young-Cheol;Kim, Jeong-Gon
    • Journal of Powder Materials
    • /
    • v.23 no.6
    • /
    • pp.447-452
    • /
    • 2016
  • Neodymium-iron-boron (Nd-Fe-B) sintered magnets have excellent magnetic properties such as the remanence, coercive force, and the maximum energy product compared to other hard magnetic materials. The coercive force of Nd-Fe-B sintered magnets is improved by the addition of heavy rare earth elements such as dysprosium and terbium instead of neodymium. Then, the magnetocrystalline anisotropy of Nd-Fe-B sintered magnets increases. However, additional elements have increased the production cost of Nd-Fe-B sintered magnets. Hence, a study on the control of the microstructure of Nd-Fe-B magnets is being conducted. As the coercive force of magnets improves, the grain size of the $Nd_2Fe_{14}B$ grain is close to 300 nm because they are nucleation-type magnets. In this study, fine particles of Nd-Fe-B are prepared with various grinding energies in the pulverization process used for preparing sintered magnets, and the microstructure and magnetic properties of the magnets are investigated.

Effect of Cerium on the Microstructure and Room Temperature Tensile Properties of Mg-4Al-2Sn-1Si Alloys (Mg-4Al-2Sn-1Si 합금의 조직 및 상온 인장 특성에 미치는 Ce의 영향)

  • Kim, Jung-Hoon;Cho, Dae-Hyun;Park, Ik-Min
    • Journal of Korea Foundry Society
    • /
    • v.32 no.6
    • /
    • pp.289-295
    • /
    • 2012
  • Mg-Al-Sn-Si system alloy, as a promising cheap heat-resistant Mg alloy for automobile engine part, has been investigated. Refinement of microstructure and precipitation of thermally stable secondary phases are important goal for the design of heat-resistant Mg alloy. In this study, the effect of Ce on the microstructure and room temperature mechanical properties of Mg-Al-Sn-Si alloy was investigated. High thermally stable $Mg_2Si$ phases in Mg-Al-Sn-Si alloy is very useful intermetallic compound. However, the $Mg_2Si$ phases often result in poor mechanical properties due to the coarse chinese type $Mg_2Si$ phases. The experimental specimens were fabricated by fluxless melting under $CO_2+SF_6$ atmosphere and poured into the permanent pre-heated at $200^{\circ}C$. It was told that Ce addition can modify $Mg_2Si$ phases and refine microstructure and improve the tensile strength, yield strength and elongation.