• 제목/요약/키워드: Microstructural property

검색결과 177건 처리시간 0.023초

Nitrogen Permeation Treatment of Duplex and Austenitic Stainless Steels

  • Yoo, D.K.;Joo, D.W.;Kim, Insoo;Kang, C.Y.;Sung, J.H.
    • 열처리공학회지
    • /
    • 제15권2호
    • /
    • pp.57-64
    • /
    • 2002
  • The 22%Cr-5%Ni-3%Mo duplex and 18%Cr-8%Ni austenitic stainless steels have been nitrogen permeated under the $1Kg/cm^2$ nitrogen gas atmosphere at the temperature range of $1050^{\circ}C{\sim}1150^{\circ}C$. The nitrogen-permeated duplex and austenitic stainless steels showed the gradual decrease in hardness with increasing depth below surface. The duplex stainless steel showed nitrogen pearlite at the outmost surface and austenite single phase in the center after nitrogen permeation treatment, while the obvious microstructural change was not observed for the nitrogen-permeated austenitic stainless steel. After solution annealing the nitrogen-permeated stainless steels(NPSA treatment) at $1200^{\circ}C$ for 10 hours, the hardness of the duplex and austenitic stainless steels was constant through the 2 mm thickness of the specimen, and the ${\alpha}+{\gamma}$ phase of duplex stainless steel changed to austenite single phase. Tensile strengths and elongations of the NPSA-treated duplex stainless steel remarkably increased compared to those of solution annealed (SA) duplex stainless steel due to the solution strengthening effect of nitrogen and the phase change from a mixture of ferrite and austenite to austenite single phase, while the NP-treated austenitic stainless steel displayed the lowest value in elongation due to inhomogeneous deformation by the hardness difference between surface and interior.

Microstructure and Mechanical Property of Irradiated Zr-2.5Nb Pressure Tube in Wolsong Unit-1

  • 김영숙;안상복;오동준;김성수;정용무
    • 소성∙가공
    • /
    • 제8권3호
    • /
    • pp.241-241
    • /
    • 1999
  • With the aim of assessing the degradation of Zr-2.5Nb pressure tubes operating in the Wolsong unit-1 nuclear power plant, characterization tests are being conducted on irradiated Zr-2.5Nb tubes removed after 10-year operation. The examined tube had been exposed to temperatures ranging from 264 to 306℃ and a neutron fluence of 8.9×$10^{21}$ n/cm²(E>1 MeV) at the maximum. Tensile tests were carried out at temperatures ranging from RT to 300℃. The density of a-type and c-type dislocations was examined on the irradiated Zr-2.5Nb tube using a transmission electron microscope. Neutron irradiation up to 8.9×$10^{21}$ n/cm²(E>1 MeV) yielded an increase in a-type dislocation density of the Zr-2.5Nb pressure tube to 7.5×$10^{14} m^{-2}$, which was highest at the inlet of the tube exposed to the low temperature of 275℃. In contrast, the c-component dislocation density did not change with irradiation, keeping an initial dislocation density of 0.8×$10^{14} m^{-2}$ over the whole length of the tube. As expected, the neutron irradiation increased mechanical strength by about 17-26% in the transverse direction and by 34-39% in the longitudinal direction compared to that of the unirradiated tube at 300℃. The change in the mechanical properties with irradiation is discussed in association with the microstructural change as a function of temperature and neutron fluence.

방전 플라즈마 소결(Spark Plasma Sintering) 방법에 의해 제조된 Nb-Si-B계 합금의 미세조직 특성 (Microstructure Characterization of Nb-Si-B alloys Prepared by Spark Plasma Sintering Process)

  • 김상환;김남우;정영근;오승탁;김영도;이성;석명진
    • 한국분말재료학회지
    • /
    • 제22권6호
    • /
    • pp.426-431
    • /
    • 2015
  • Microstructural examination of the Nb-Si-B alloys at Nb-rich compositions is performed. The Nb-rich corner of the Nb-Si-B system is favorable in that the constituent phases are Nb (ductile and tough phase with high melting temperature) and $T_2$ phase (very hard intermetallic compound with favorable oxidation resistance) which are good combination for high temperature structural materials. The samples containing compositions near Nb-rich corner of the Nb-Si-B ternary system are prepared by spark plasma sintering (SPS) process using $T_2$ and Nb powders. $T_2$ bulk phase is made in arc furnace by melting the Nb slug and the Si-B powder compact. The $T_2$ bulk phase was subsequently ball-milled to powders. SPS is performed at $1300^{\circ}C$ and $1400^{\circ}C$, depending on the composition, under 30 MPa for 600s, to produce disc-shaped specimen with 15 mm in diameter and 3 mm high. Hardness tests (Rockwell A-scale and micro Vickers) are carried out to estimate the mechanical property.

냉간금형강의 미세조직과 기계적 특성: STD11과 8%Cr 강의 비교 (Microstructures and Mechanical Properties of Cold-Work Tool Steels: A Comparison of 8%Cr Steel with STD11)

  • 김호영;강전연;손동민;이대수;이태호;정우창;조경목
    • 열처리공학회지
    • /
    • 제27권5호
    • /
    • pp.242-252
    • /
    • 2014
  • A comparative study was performed on the microstructures and the mechanical properties of STD11 and 8Cr steel. The specimens were quenched from $1030^{\circ}C$ and tempered at $240^{\circ}C$ and $520^{\circ}C$. Vickers hardness, impact toughness and tensile tests were conducted at various tempering temperatures. Microstructural characterization to measure grain size, volume fraction of retained austenite and distribution of carbides was carried out by using SEM, EBSD, TEM and X-ray diffraction techniques. Due to finer $M_7C_3$ carbides dispersed, 8Cr steel showed larger impact toughness and plasticity than STD11 irrespective of the tempering temperature. While 8Cr steel had lower hardness in as-quenched state and after tempering at $240^{\circ}C$ owing to smaller carbide content and more retained austenite, it was harder after tempering at $520^{\circ}C$ due to larger precipitation hardening from finer $M_{23}C_6$.

2상 스테인레스 주강의 공냉 열처리 적용 가능성 (Applicability of Air Cooling Heat-treatment for a Duplex Stainless Steel Casting)

  • 김봉환;양식;신제식;이상목;문병문
    • 한국주조공학회지
    • /
    • 제26권1호
    • /
    • pp.17-26
    • /
    • 2006
  • The substitution of cooling method from water quenching to air cooling after solution heat treatment was aimed for the development of a convenient and economical heat treatment process of duplex stainless steels without deterioration of mechanical and corrosion resistant properties for the industry. In order to achieve this goal, the mechanical properties and corrosion properties of a ASTM A890-4A duplex stainless steel were systematically investigated as functions of casting condition and cooling method after solution heat treatment. A 3-stepped sand mold and a permanent Y-block mold were used to check the effects of solidification structure and cooling rate after solution heat treatment. The microstructural characteristics such as the ferrite/austenite phase ratio and the precipitation behavior of ${\sigma}$ phase and carbides were investigated by combined analysis of OM and SEM-EDX with an aid of TTT diagram. Hardness and tension test were performed to evaluate the mechanical properties. Impact property at $-40^{\circ}C$ and corrosion resistance were also examined to check the possibility of the industrial application of this basic study. Throughout this investigation, air-cooling method was proved to effectively substitute for water-quenching process after the solution heat treatment, when the duplex stainless steel was sand mold cast with a thickness below 15 mm or permanent mold cast with a thickness below 20 mm.

Structural and Property Changes in Glass-like Carbons Formed by Heat Treatment and Addition of Filler

  • Kim, Jangsoon;Kim, Myung-Soo;Hahm, Hyun-Sik;Lim, Yun-Soo
    • Macromolecular Research
    • /
    • 제12권4호
    • /
    • pp.399-406
    • /
    • 2004
  • Glass-like carbon precursors shrink significantly during curing and carbonization, which leads to crack formation and bending. Cured furan resin powder and ethanol were added to furan resin to diminish the weight loss, to suppress the shrinkage and bending, and to readily release the gases evolved during polymerization and curing. Curing and carbonization were controlled by pressure and slow heating to avoid damage to the samples. The effect of the filler and ethanol on the fabrication process was examined by measuring the properties of the glass-like carbon, such as the specific gravity, bending strength, electrical resistivity, and microstructural change. The specific gravities of the filler-added glass-like carbons were higher than those of the ethanol-added samples because of the formation of macropores from the vaporization of ethanol during the curing and polymerization processes. Although the ethanol-added glass-like carbons exhibited lower bending strengths after carbonization than did the filler-added samples, the opposite result was observed after aging at 2,600$^{\circ}C$. We found that the macropores created from ethanol were contracted and removed upon heat treatment. The electrical resistivity of the glass-like carbon aged at 2,600$^{\circ}C$ was lower than those of the samples carbonized at 1,000$^{\circ}C$. We attribute this phenomenon to the fact that aging at high temperature led to well-developed microstructures, the removal of macropores, and the reduction of the surface area.

TiFe 공정합금의 미소합금 첨가에 따른 미세구조 변화 및 기계적 물성 (Influence of Minor Element on Microstructure and Mechanical Properties of TiFe Ultrafine Eutectic Alloys)

  • 이찬호;조재혁;문상철;김정태;여은진;김기범
    • 한국재료학회지
    • /
    • 제22권11호
    • /
    • pp.615-619
    • /
    • 2012
  • Recently, ultrafine grained (ufg, typically 100 > d > 500 nm) Ti-Fe eutectic materials have been highlighted due to their extraordinarily high strength and good abrasion resistance compared to conventional coarse grained (cg, d > $1{\mu}m$) materials. However, these materials exhibit limited plastic strain and toughness during room temperature deformation due to highly localized shear strain. Several approaches have been extensively studied to overcome such drawbacks, such as the addition of minor elements (Sn, Nb, Co, etc.). In this paper, we have investigated the influence of the addition of Gd and Y contents (0.3-1.0 at.%) into the binary Ti-Fe eutectic alloy. Gd and Y are chosen due to their immiscibility with Ti. Microstructural investigation reveals that the Gd phase forms in the eutectic matrix and the Gd phase size increases with increasing Gd content. The improvement of the mechanical properties is possibly correlated to the precipitation hardening. On the other hand, in the case of Ti-Fe-Y alloys, with increasing Y contents, primary phases form and lamellar spacing increases compared to the case of the eutectic alloy. Investigation of the mechanical properties reveals that the plasticity of the Ti-Fe-Y alloys is gradually improved, without a reduction of strength. These results suggest that the enhancement of the mechanical properties is closely related to the formation of the primary phase.

Mg-Nd-Y-Zr-Zn 주조합금의 인장특성에 미치는 시효처리의 영향 (Effect of Aging Treatment on the Tensile Properties of Mg-Nd-Y-Zr-Zn Casting Alloys)

  • 김현식;예대희;강민철;김인배
    • 한국재료학회지
    • /
    • 제18권5호
    • /
    • pp.266-271
    • /
    • 2008
  • Magnesium alloys are alloyed with rare earth elements (Re, Ca, Sr) due to the limited use of magnesium in high-temperature conditions. In this study, the influences of Zr and Zn on the aging behavior of a Mg-Nd-Y alloy were investigated. magnesium alloys containing R.E elements require aging treatments Specifically, Nd, Y and Zr are commonly used for high-temperature magnesium alloys. Various aging treatments were conducted at temperatures of 200, 250 and $300^{\circ}C$ for 0.5, 1, 3, 6, and 10 hours in order to examine the microstructural changes and mechanical properties at a high temperature ($150^{\circ}C$). Hardness and high-temperature ($150^{\circ}C$) tensile tests were carried out under various aging conditions in order to investigate the effects of an aging treatment on the mechanical properties of a Mg-3.05Nd-2.06Y-1.13Zr-0.34Zn alloy. The maximum hardness was 67Hv; this was achieved after aging at $250^{\circ}C$ for 3 hours. The maximum tensile, yield strength and elongation at $150^{\circ}C$ were 237MPa, 145MPa and 13.6%, respectively, at $250^{\circ}C$ for 3 hours. The strengths of the Mg-3.05Nd-2.06Y-1.13Zr-0.34Zn alloy increased as the aging time increased to 3 hours at $250^{\circ}C$ This is attributed to the precipitation of a Nd-rich phase, a Zr-rich phase and $Mg_3Y_2Zn_3$.

입계확산처리된 Nd-Fe-B 소결자석에서 Dy의 확산에 미치는 Cu와 Al 분말의 혼합 효과 (Effect of Cu/Al powder mixing on Dy diffusion in Nd-Fe-B sintered magnets treated with a grain boundary diffusion process)

  • 이민우;장태석
    • 한국분말재료학회지
    • /
    • 제23권6호
    • /
    • pp.432-436
    • /
    • 2016
  • We investigate the microstructural and magnetic property changes of $DyH_2$, $Cu+DyH_2$, and $Al+DyH_2$ diffusion-treated NdFeB sintered magnets with the post annealing (PA) temperature. The coercivity of all the diffusion-treated magnets increases with increasing heat treatment temperature except at $910^{\circ}C$, where it decreases slightly. Moreover, at $880^{\circ}C$, the coercivity increases by 3.8 kOe in Cu and 4.7 kOe in Al-mixed $DyH_2$-coated magnets, whereas this increase is relatively low (3.0 kOe) in the magnet coated with only $DyH_2$. Both Cu and Al have an almost similar effect on the coercivity improvement, particularly over the heat treatment temperature range of $790-880^{\circ}C$. The diffusivity and diffusion depth of Dy increases in those magnets that are treated with Cu or Al-mixed $DyH_2$, mainly because of the comparatively easy diffusion path provided by Cu and Al owing to their solubility in the Nd-rich grain boundary phase. The formation of a highly anisotropic $(Nd,\;Dy)_2Fe_{14}B$ phase layer, which acts as the shell in the core-shell-type structure so as to prevent the reverse domain movement, is the cause of enhanced coercivity of diffusion-treated Nd-Fe-B magnets.

RF 마그네트론 스퍼터링 방법으로 제조한 (Ba,Sr)TiO$_3$ 박막의 유전 및 초전특성 (Dielectric and Pyroelectric Prooperties of (Ba,Sr)TiO$_3$ Thin Films Grown by RF Magntron Sputtering)

  • 박재석;김진섭;이정희;이용현;한석룡;이재신
    • 한국세라믹학회지
    • /
    • 제36권4호
    • /
    • pp.403-409
    • /
    • 1999
  • RF 마그네트론 스퍼터링방법으로 Pt/Ti/NON/Si 기판 위에 $Ba_{0.66}$$Sr_{0.38}$$TiO_{3}$(BST) 박막을 증착한 다음 유전 및 초전특성을 살펴보았다. BST 박막을 증착할 때 기판온도를 300~-$600^{\circ}C$로 변화시킨 결과 기판온도가 증가할수록 박막의 결정성과 입도가 증가하여 유전율과 초전계수가 증가하였다. 한편 하부전극인 Pt의 증착조건이 BST 박막의 몰성에 미치는 영향도 살펴보았다. Pt의 증착온도와 Pt의 미세구조와 결정성뿐만 아니라 상부에 형성된 BST 박막의 배향성에도 큰 영향을 미쳤으며, 그 결과 BST의 초전특성에도 큰 영향을 미쳤다. BST 박막과 Pt 하부전극의 증착조건을 적정화함으로써 본 연구에엇는 상온에서 초전계수가 240 $nCcm^{-2}K^{-1}$인 BST 박막을 얻었다.

  • PDF