DOI QR코드

DOI QR Code

Microstructures and Mechanical Properties of Cold-Work Tool Steels: A Comparison of 8%Cr Steel with STD11

냉간금형강의 미세조직과 기계적 특성: STD11과 8%Cr 강의 비교

  • Kim, Hoyoung (Department of Materials Science and Engineering, Pusan National University) ;
  • Kang, Jun-Yun (Korea Institute of Materials Science) ;
  • Son, Dongmin (POSCO Specialty Steel) ;
  • Lee, Dae Soo (POSCO Specialty Steel) ;
  • Lee, Tae-Ho (Korea Institute of Materials Science) ;
  • Jeong, Woo Chang (School of Mechanical and Automotive Engineering, Catholic University of Daegu) ;
  • Cho, Kyung-Mox (Department of Materials Science and Engineering, Pusan National University)
  • 김호영 (부산대학교 재료공학과) ;
  • 강전연 (한국기계연구원 부설 재료연구소) ;
  • 손동민 (포스코특수강) ;
  • 이대수 (포스코특수강) ;
  • 이태호 (한국기계연구원 부설 재료연구소) ;
  • 정우창 (대구가톨릭대학교 기계자동차공학부) ;
  • 조경목 (부산대학교 재료공학과)
  • Received : 2014.08.25
  • Accepted : 2014.09.18
  • Published : 2014.09.30

Abstract

A comparative study was performed on the microstructures and the mechanical properties of STD11 and 8Cr steel. The specimens were quenched from $1030^{\circ}C$ and tempered at $240^{\circ}C$ and $520^{\circ}C$. Vickers hardness, impact toughness and tensile tests were conducted at various tempering temperatures. Microstructural characterization to measure grain size, volume fraction of retained austenite and distribution of carbides was carried out by using SEM, EBSD, TEM and X-ray diffraction techniques. Due to finer $M_7C_3$ carbides dispersed, 8Cr steel showed larger impact toughness and plasticity than STD11 irrespective of the tempering temperature. While 8Cr steel had lower hardness in as-quenched state and after tempering at $240^{\circ}C$ owing to smaller carbide content and more retained austenite, it was harder after tempering at $520^{\circ}C$ due to larger precipitation hardening from finer $M_{23}C_6$.

Keywords

References

  1. G. Roberts, G. Krauss and R. Kennedy : Tool Steels, 5th ed, ASM International, Materials Park, OH (1998) 7-14.
  2. KS D 3753 : 지식경제부 기술표준원 (2008).
  3. JIS G 4404 : Japanese Standards Association (2006).
  4. ASTM A 681-08 : ASTM International (2008).
  5. K. Fukaura, H. Sunada, Y. Yokoyama, K. Teramoto, D. Yokoi and N. Tsujii : Tetsu-to-Hagan, 84 (1998) 72-77.
  6. K. Fukaura, Y. Yokoyama, D. Yokoi, N. Tsujii and K. Ono : Metall. Mater. Trans. A, 35A (2004) 1289-1300.
  7. E. Martinez-Gonzalez, I. Picas, D. Casellas and J. Romeu : J. Acoustic Emission, 28 (2010) 163-169.
  8. I. Picas, R. Hernndez, D. Casellas and I. Valls : in Proc. IDDRG Int. Conf. Bilbao, Spain, 5-8 June (2011).
  9. F. Arieta, E. B. M. Netto, A. Reguly, W. K. Pannes, U. Beutler, F. Van Soest and C. Ernst : ASTM Special Technical Publication, 1532 STP (2012) 129-145.
  10. Advanced High Strength Steel (AHSS) Application Guidelines, Ver. 4.1, WorldAutoSteel, 2011, http://www.worldautosteel.org
  11. J. P. McGulre : Advanced Stamping for High Strength Steels, in Great Designs in Steel Seminar, 2012, http://www.autosteel.org
  12. E. Billur : Stamping Journal Jan/Feb (2010) 8-9.
  13. KS D ISO 148-1, 지식경제부 기술표준원 (2007).
  14. KS D 0205, 지식경제부 기술표준원 (2002).
  15. ASTM E975, ASTM international (2013).
  16. J. Y. Kang, Y. U. Heo, H. Kim, D. W. Suh, D. Son, D. H. Lee and T. H. Lee : Mater. Sci. Eng. A, 614 (2014) 36-44. https://doi.org/10.1016/j.msea.2014.07.004
  17. G. Roberts, G. Krauss and R. Kennedy : Tool Steels, 5th ed, ASM International, Materials Park, OH (1998) 209-215.
  18. I. Picas, N. Cuadrado, D. Casellas, A. Goez and L. Llanes : Procedia Engineering, 2 (2010) 1777-1785. https://doi.org/10.1016/j.proeng.2010.03.191
  19. K. Fukaura and K. Ono : J. Acoustic Emission, 19 (2001) 91-99.
  20. H. K. D. H Bhadeshia and R. W. K. Honeycombe : Steels: Microstructure and Properties, 3rd ed, Elsevier (2006) 183-189.
  21. B. H. Jung and Y. S. Ahn : J. Kor. Inst. Met. & Mater, 36 (1988) 1763-1770.
  22. W. S. Owen : Trans. ASM, 46 (1954) 812-829.
  23. G. Roberts, G. Krauss and R. Kennedy : Tool Steels, 5th ed, ASM International, Materials Park, OH (1998) 166.

Cited by

  1. Microstructural and Mechanical Characteristics of Novel 6% Cr Cold-Work Tool Steel vol.7, pp.12, 2017, https://doi.org/10.3390/met7010012
  2. Enhanced electrochemical performance and decreased strain of graphite anode by Li 2 SiO 3 and Li 2 CO 3 co-modifying vol.223, 2017, https://doi.org/10.1016/j.electacta.2016.11.167
  3. 고성능 냉간금형강의 미세조직과 기계적 특성: 레데부라이트(ledeburitic) 및 매트릭스(matrix)형 강종의 비교 vol.28, pp.4, 2015, https://doi.org/10.12656/jksht.2015.28.4.181
  4. 매트릭스(matrix)형 냉간금형강의 기계적 특성에 미치는 NbC 탄화물 첨가의 영향 vol.28, pp.5, 2014, https://doi.org/10.12656/jksht.2015.28.5.239
  5. 고합금 공구강의 최적 오스테나이트 처리 온도 결정 vol.30, pp.4, 2014, https://doi.org/10.12656/jksht.2017.30.4.156
  6. 냉간금형 인서트(insert)용 주강의 미세조직 vol.30, pp.5, 2014, https://doi.org/10.12656/jksht.2017.30.5.197