• Title/Summary/Keyword: Microstrip patch

Search Result 620, Processing Time 0.025 seconds

Design of Broadband Planar Dipole Antenna for Indoor Digital TV Reception (실내 디지털 TV 수신용 광대역 평면 다이폴 안테나 설계)

  • Lee, Jong-Ig;Yeo, Junho;Park, Jin-Taek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.3
    • /
    • pp.497-502
    • /
    • 2014
  • In this paper, a design method for a broadband planar dipole antenna for terrestrial digital television (DTV) reception is studied. The dipole is modified to half bow-tie type for size reduction. The balun between feeding microstrip line and coplanar strip (CPS) line is implemented with a rectangular patch inserted along the center of the CPS line. The proposed antenna is the structure of dual resonances, one is due to the dipole and the other is due to the CPS line attached by the balun. The effects of various geometrical parameters on the antenna performance are examined, and the antenna is designed for terrestrial DTV band (470-806 MHz). The prototype antenna is fabricated on an FR4 substrate with a size of $95mm{\times}178mm$, and tested experimentally to verify the results of this study.

A Dual-Band Asymmetrical Metamaterial Antenna for Orthogonal Radiation Patterns (수직한 방사패턴을 형성하는 이중대역 비대칭 배열 메타물질 안테나)

  • Pyo, Seong-Min;Han, Sang-Min;Lee, Dong-Hyo;Kim, Young-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.9
    • /
    • pp.2246-2252
    • /
    • 2009
  • A new metamaterial antenna with dual resonant modes is presented using an asymmetrical periodic arrangement for orthogonal radiation patterns. The proposed antenna produces two orthogonal modes by the asymmetrical periodic unit-cell arrangement. The orthogonal resonant mode provides perpendicular radiation patterns without changing the antenna polarization at each resonant mode. The fabricated antenna shows good agreements with the theoretical analysis of the electric-field. The experimental results shows the orthogonal radiation patterns along x- and y-axises, and gains are 3.34 and 3.86 dBi at each radiating resonant mode, respectively. Additionally, slotted ground structures are embedded on the back side of the antenna in order to reduce the size and enhance the radiation efficiency of 12 % and 27 %, respectively.

A Design and Implementation of a Prototype Microwave Power Transmission System (마이크로파 전력전송시스템의 프로토타입 설계 및 구현)

  • Park, Min-Woo;Park, Jin-Woo;Back, Seung-Jin;Koo, Ja-Kyung;Lim, Jong-Sik;Ahn, Dal
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.9
    • /
    • pp.2227-2235
    • /
    • 2009
  • This paper describes the system configuration and measured performances of a wireless power transmission system which utilizes microwave. The technically final target of this system is to provide DC power to various mobile terminals within limited spaces such as buildings, conference rooms, and so on. The prototype system is built using in-house designed and fabricated circuits such as microwave oscillator, high power amplifier, microstrip patch antenna, low pass filter, and detector/rectifier. The fixed RF power of 29.3dBm at 2.4GHz is produced from the high power amplifier and transmitted through the transmitting antenna, while the received RF power at the receiving antenna is transformed into DC power through the detector/rectifier. The measured change of DC voltage according to the distance between transmitting and receiving antenna is described.

Design and Implementation of 2.4 GHz Beamforming antenna using 4×4 Butler Matrix (4×4 버틀러 매트릭스를 이용한 2.4 GHz 빔포밍 안테나 설계 및 구현)

  • Kim, Young-Jin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.11
    • /
    • pp.1687-1695
    • /
    • 2021
  • In this paper, it is designed and analyzed the beamforming antenna using the butler matrix. The operating frequency of the proposed beamforing antenna is ISM band of 2.4 GHz band and the component of the beamforing antenna consisted of a 1×4 array antenna and a 4×4 butler matrix. Each output port of 4×4 butler matrix outputs the signal having a different phase, it is provided to each input port of 1×4 array antenna. The beamforming antenna with four output ports forms a total of four beams. In order to analyze the radiation pattern of the beamforming antenna, it was provided by switching the signal to the input port and proceeded the Individual analysis for the input port 1 to 4. The main beams of the proposed beamforming antenna were formed in the -12°, 40°, -40° and 12° directions according to each input port, respectively.

Design and Manufacture of Triple-Band Antennas with Two Branch Line and a Vertical Line for WLAN/WiMAX system applications (2개 분기선로와 수직 선로를 갖는 WLAN/WiMAX 시스템에 적용 가능한 삼중대역 안테나 설계 및 제작)

  • Choi, Tae-Il;Yoon, Joong-Han
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.6
    • /
    • pp.740-747
    • /
    • 2019
  • In this paper, an antenna applicable to WLAN and WiMAX frequency bands is designed, fabricated, and measured. The proposed antenna is designed to have two branch strip line in the patch plane and a rectangular slit in the ground plane based on microstrip feeding for triple band characteristics and added a vertical strip in the ground plane to enhance impedance bandwidth characteristics. The proposed antenna is designed on a substrate with a relative permittivity of 4.4, a thickness of 1.0 mm, and has a size of $18.0mm(W1){\times}37.3mm$ (L4+L5+L7). From the fabricated and measured results, impedance bandwidths of 480 MHz (2.32 to 2.80 GHz) for 2.4/2.5 GHz band, 810 MHz (3.22 to 4.03 GHz) for 3.5 GHz band, and 1,820 MHz (5.05 to 6.87 GHz) for 5.0 GHz band were obtained based on the impedance bandwidth. Measured 3D pattern and gains are displayed.

Optimal Design of 70GHz Band Array Antenna for Short-Range Radar Sensor using The Chebyshev Polynomials (Chebyshev 다항식을 이용한 70GHz 대역 근거리 레이다 센서용 배열안테나의 최적설계)

  • Gue-Chol Kim;Joo-Suk Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.11-18
    • /
    • 2024
  • This paper presents a procedure to optimize the design of 70GHz band array antenna for automotive short range radar sensor applications using Chebyshev polynomials. SRR(: Short Range Radar) systems require a wide angle width and low Side lobe level to detect targets within close proximity while ensuring a high Field of View(FoV). The optimized antenna operates in the 76 to 81GHz frequency range, and to reduce the antenna size, we arranged 12 patches in series, achieving an SLL of 10dB, angle with of 112.5o, gain of 15.4dB and an input return loss of less than -10dB at 78GHz. In this paper, we proceed with antenna design for SRR using Chebyshev polynomials, and present an optimal design for antenna structures to be used in MRR(: Medium-Range Radar) and LRR(: Long Range Radar) applications based on this paper

Developement of Planar Active Array Antenna System for Radar (평면형 능동 위상 배열 레이더용 안테나 시스템 개발)

  • Chon, Sang-Mi;Na, Hyung-Gi;Kim, Soo-Bum;Lee, Jeong-Won;Kim, Dong-Yoon;Kim, Seon-Joo;Ahn, Chang-Soo;Lee, Chang-Hee
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.12
    • /
    • pp.1340-1350
    • /
    • 2009
  • The design and implementation of planar Active Phased Array Antenna System are described in this paper. This Antenna system operates at X-band with its bandwidth 10 % and dual polarization is realized using dual slot feeding microstrip patch antenna and SPDT(Single Pole Double Through) switch. Array Structure is $16\times16$ triangular lattice structure and each array is composed of TR(Transmit & Receive) module with more than 40 dBm power. Each TR module includes digital attenuator and phase shifter so that antenna beam can be electronically steered over a scan angle$({\pm}60^{\circ})$. Measurement of antenna pattern is conducted using a near field chamber and the results coincide with the expected beam pattern. From these results, it can be convinced that this antenna can be used with control of beam steering and beam shaping.

Dual Band-notched Monopole Antenna for 2.4 GHz WLAN and UWB Applications (이중대역 저지특성을 가지는 2.4 GHz WLAN 및 UWB 겸용 모노폴 안테나)

  • Lee, Ki-yong;Lee, Young-soon
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.2
    • /
    • pp.193-199
    • /
    • 2017
  • In the paper, a dual band-notched monopole antenna is proposed for 2.4 GHz WLAN (2.4 ~ 2.484 GHz) and UWB (3.1 ~ 10.6 GHz) applications. The 3.5 GHz WiMAX band notched characteristic is achived by a pair of L-shaped slots instead of the previous U-shaped slot on the center of the radiating patch, whereas the 7.5 GHz band notched characteristic is achived by C-shaped strip resonator placed near to the microstrip feed line. The measured impedance bandwidth (${\mid}S_{11}{\mid}{\leq}-10dB$) is 8.62 GHz (2.38 ~ 11 GHz) which is sufficient to cover 2.4 GHz WLAN and UWB band, while measured band-notched bandwidths for 3.5 GHz WiMAX and 7.5 GHz bnad are 1.13 GHz (3.15 ~ 4.28 GHz) and 800 MHz (7.2 ~ 8 GHz) respectively. In particular, it has been observed that antenna has a good omnidirectional radiation patterns and higher gain of 2.51 ~ 6.81 dBi over the entire frequency band of interest.

Optical True Time-Delay for Planar Phased Array Antennas Composed of a FBG Prism and a Fiber Delay Lines Matrix (FBG 프리즘과 광섬유 지연선로 행렬을 이용한 평면 위상 배열 안테나용 광 실시간 지연선로)

  • Jung, Byung-Min;Shin, Jong-Dug;Kim, Boo-Gyoun
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.1
    • /
    • pp.7-17
    • /
    • 2006
  • In this paper, we proposed an optical true time-delay (TTD) for planar phased array antennas (PAAs), which is composed of a wavelength-dependent optical true time delay (WDOTTD) followed by a wavelength-independent optical true time delay (WIOTTD). The WDOTTD is a fiber Bragg gratings (FBGs) Prism and the WDOTTD is a fiber delay-lines matrix of which each component consists of a certain length of fiber connected to cross-ports of a 2${\times}$2 MEMS switch. A 10-GHz 2-bit${\times}$4-bit two-dimensional optical TTD has been fabricated by cascading a WDOTTD with a maximum time delay of 810 ps to a WIOTTD of $\pm$50 ps. Time delay and insertion loss for each radiation angle have been measured. Time delay error for the WIOTTD has been measured to be less than $\pm$1 ps. We have also designed a two-dimensional 10-GHz PAA composed of 8${\times}$8 microstrip patch antenna elements driven by the proposed TTD. The radiation patterns of this PAA have been obtained by simulation and analyzed.

X-band Microstrip 4×4 Broadband Circularly Polarized Array Antenna Using Sequential Rotation Divider Structure (시퀀셜 로테이션 분배기 구조를 이용한 X-band 마이크로스트립 4×4 광대역 원형 편파 배열 안테나)

  • Kim, Jung-Han;Kim, Joong-Kwan;Kim, Yong-Jin;Lee, Hong-Min
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.2 s.117
    • /
    • pp.158-165
    • /
    • 2007
  • In this paper, the circularly polarized $4{\times}4$ array antenna is proposed for the X-band. A single antenna consists of square patch and unequal cross-aperture coupled feeding. The RHCP(Right Handed Circularly Polarization) is generated by unequal cross-aperture coupled feeding. By reducing space among elements of way antenna from 0.8 ${\lambda}_0$ to 0.45 ${\lambda}_0$, the mounting area of array antenna is miniaturized. The $2{\times}2$ array antenna is designed using sequential rotation feeding network. The good level of gain, axial ratio, and impedance bandwidth are achieved. The $4{\times}4$ array antenna is extended by ${\lambda}/4$ transformer and T-junction power divider. The simulated maximum radiation gain is 15.09 dBi at 10 GHz. The simulated 3 dB Axial Ratio bandwidth is from 9.05 to 10.4 GHz(13.5%). Also the measured impedance bandwidth($VSWR{\leq}2$) of manufactured $4{\times}4$ array antenna is from 8.45 to 11.84 GHz(33.9%). The measured maximum radiation gain is 11.10 dBi at 10 GHz. The measured 3 dB Axial Ratio bandwidth is from 9.42 to 10.47 GHz(10.5%).