• Title/Summary/Keyword: Microstrip line

Search Result 710, Processing Time 0.031 seconds

SOI CMOS Miniaturized Tunable Bandpass Filter with Two Transmission zeros for High Power Application (고 출력 응용을 위한 2개의 전송영점을 가지는 최소화된 SOI CMOS 가변 대역 통과 여파기)

  • Im, Dokyung;Im, Donggu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.1
    • /
    • pp.174-179
    • /
    • 2013
  • This paper presents a capacitor loaded tunable bandpass chip filter using multiple split ring resonators (MSRRs) with two transmission zeros. To obtain high selectivity and minimize the chip size, asymmetric feed lines are adopted to make a pair of transmission zeros located on each side of passband. Compared with conventional filters using cross-coupling or source-load coupling techniques, the proposed filter uses only two resonators to achieve high selectivity through a pair of transmission zeros. In order to optimize selectivity and sensitivity (insertion loss) of the filter, the effect of the position of asymmetric feed line on transmission zeros and insertion loss is analyzed. The SOI-CMOS switched capacitor composed of metal-insulator-metal (MIM) capacitor and stacked-FETs is loaded at outer rings of MSRRs to tune passband frequency and handle high power signal up to +30 dBm. By turning on or off the gate of the transistors, the passband frequency can be shifted from 4GH to 5GHz. The proposed on-chip filter is implemented in 0.18-${\mu}m$ SOI CMOS technology that makes it possible to integrate high-Q passive devices and stacked-FETs. The designed filter shows miniaturized size of only $4mm{\times}2mm$ (i.e., $0.177{\lambda}g{\times}0.088{\lambda}g$), where ${\lambda}g$ denotes the guided wave length of the $50{\Omega}$ microstrip line at center frequency. The measured insertion loss (S21)is about 5.1dB and 6.9dB at 5.4GHz and 4.5GHz, respectively. The designed filter shows out-of-band rejection greater than 20dB at 500MHz offset from center frequency.

A Novel Feed Network for a Sectoral Conical Beam (분할된 원추형 빔 형성을 위한 안테나 급전 구조)

  • Kim, Jae-Hee;Park, Wee-Sang
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.5
    • /
    • pp.413-420
    • /
    • 2009
  • We propose a novel feed network for a $2{\times}2$ array antenna to form a sectoral conical beam. The proposed feed network, which is a symmetrical structure, consists of four $90^{\circ}$ hybrids, a crossover, and four $90^{\circ}$ delay lines. To verify the performance of the feed network a $2{\times}2$ array antenna and the feed network are fabricated on a microstrip structure, and the radiation patterns are measured at the center frequency of 2.57 GHz. The maximum radiation is measured at the $45^{\circ}$ elevation angle and at the $45^{\circ}$, $135^{\circ}$, $225^{\circ}$, and $315^{\circ}$ azimuth angles depending on the choice of the input port of the feed network.

A Design of K-Band Low Phase noise Oscillator by Direct Coupling of K-band Dielectric Resonator (유전체 공진기의 직접결합에 의한 K-Band 저위상잡음 발진기 설계)

  • Lim, Eun-Jae;Han, Geon-Hee;Rhee, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.1
    • /
    • pp.17-24
    • /
    • 2014
  • In this paper, we analysed coupling coefficient between dielectric resonator of high dielectric constant and microstrip line to design for low phase noise dielectric resonator by direct coupling. Also we analysed phase noise of dielectric resonance oscillator with parallel feedback circuit to complement Q by high dielectric constant. We obtained a result from high-stability dielectric oscillator which is optimum designed through analysis of dielectric resonance oscillator phase noise and coupling coefficient. The result is that the phase noise was -83.3dBc/Hz@1KHz at 20.25GHz when we used about 3.6 coupling coefficient and ${\epsilon}_r$=30 dielectric resonator of 20.25GHz dielectric resonance oscillator. As a result, we suggested the direct-connect design method by frequency multiplication mode to prevent phase noise loss at K-Band.

High-performance 94 GHz Single Balanced Mixer Based on 70 nm MHEMTs and DAML Technology (70 nm MHEMT와 DAML 기반의 하이브리드 링 커플러를 이용한 우수한 성능의 94 GHz 단일 평형 혼합기)

  • Kim, Sung-Chan;Lim, Byoung-Ok;Beak, Tae-Jong;Shin, Dong-Hoon;Rhee, Jin-Koo
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.857-860
    • /
    • 2005
  • We reported 94 GHz, low conversion loss, and high isolation single balanced active-gate mixer based on 70 nm gate length InGaAs/InAlAs metamorphic high electron mobility transistors (MHEMTs). This mixer showed that the conversion loss and isolation characteristics were 2.5 ${\sim}$ 2.8 dB and under -30 dB, respectively, in the range of 93.65 ${\sim}$ 94.25 GHz. The low conversion loss of the mixer is mainly attributed to the high-performance of the MHEMTs exhibiting a maximum drain current density of 607 mA/mm, a extrinsic transconductance of 1015 mS/mm, a current gain cutoff frequency ($f_t$) of 330 GHz, and a maximum oscillation frequency ($f_{max}$) of 425 GHz. High isolation characteristics are due to hybrid ring coupler which adopted dielectric-supported air-gapped microstrip line (DAML) structure using surface micromachined technology. To our knowledge, these results are the best performance demonstrated from 94 GHz single balanced mixer utilizing GaAs-based HEMTs in terms of conversion loss as well as isolation characteristics.

  • PDF

Design of resistive mixer for 5.8GHz Wireless LAN (5.8GHz 무선 LAN용 저항성 혼합기 설계)

  • Yoo, Jae-Moon;Kang, Jeong-Jin;An, Jeong-Sig;Kim, Han-Suk;Lee, Jong-Arc
    • Journal of IKEEE
    • /
    • v.3 no.1 s.4
    • /
    • pp.79-85
    • /
    • 1999
  • In this paper, the resistive mixer for 5.86Hz wireless LAN, main part receiving system, was designed and implemented. The noise characteristics and the linearity in the base band was superior. For the use of local oscillator of mixer, dielectric resonator of stable output and temperature characteristics was designed. For the electrical tuning by the capacitance variation of varactor diode, the microstrip line and magnetic coupling characteristics of the dielectric resonance was used. It was obtained that gain of the proposed resistive mixer containing the RF cable loss, is -13.8dB, the conversion loss of frequency converter is -12 dB, and the output power of local oscillator is 1.67 dBm.

  • PDF

Pulsed-Bias Pulsed-RF Passive Load-Pull Measurement of an X-Band GaN HEMT Bare-chip (X-대역 GaN HEMT Bare-Chip 펄스-전압 펄스-RF 수동 로드-풀 측정)

  • Shin, Suk-Woo;Kim, Hyoung-Jong;Choi, Gil-Wong;Choi, Jin-Joo;Lim, Byeong-Ok;Lee, Bok-Hyung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.1
    • /
    • pp.42-48
    • /
    • 2011
  • In this paper, a passive load-pull using a GaN HEMT (Gallium Nitride High Electron Mobility Transistor) bare-chip in X-band is presented. To obtain operation conditions that characteristic change by self-heating was minimized, pulsed drain bias voltage and pulsed-RF signal is employed. An accuracy impedance matching circuits considered parasitic components such as wire-bonding effect at the boundary of the drain is accomplished through the use of a electro-magnetic simulation and a circuit simulation. The microstrip line length-tunable matching circuit is employed to adjust the impedance. The measured maximum output power and drain efficiency of the pulsed load-pull are 42.46 dBm and 58.7%, respectively, across the 8.5-9.2 GHz band.

Design and Manufacture of Triple-BandWidth Antennas for WLAN / WiMAX system (WLAN/WiMAX를 지원하는 삼중대역 안테나 설계 및 제작)

  • Park, Won-Young;Eom, Hye-Gyeong;Yoon, Joong-Han
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.2
    • /
    • pp.338-346
    • /
    • 2018
  • In this paper, a monopole antenna applicable to WLAN/WiMAX system is designed and fabricated. The proposed antenna is designed to have three lines and one slit based on microstrip feeding to have triple band characteristics. We optimized the lengths and slits of the three lines to obtain the required characteristics for this paper. The proposed antenna has $32.0mm(W2+W3){\times}47.1mm$ (L3+L4+L5+L8) on a dielectric substrate of $42.5mm(W1){\times}52mm(L1){\times}1.0mm$ size. From the fabrication and measurement results, bandwidths of 158 MHz (813 to 971MHz), 630 MHz (2.10 to 2.73GHz) and 1190 MHz (4.83 to 6.02GHz) were obtained based on the impedance bandwidth. The fabricated antenna also obtained the measured gain and radiation pattern in the required triple band.

Dual-band reconfigurable monopole antenna using a PIN diode (PIN 다이오드를 이용한 WLAN용 재구성 모노폴 안테나)

  • Mun, Seung-Min;Yoong, Joong-Han;Kim, Gi-Re
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.9
    • /
    • pp.1633-1640
    • /
    • 2016
  • In this paper, we propose a open-ended rectangular microstirp patch antenna with fork-shaped feeding structure. This antenna extends the effective bandwidth by transforming single or multi resonant frequency and is designed planar monopole structure with microstrip line to satisfy the WLAN bands (2.4 - 2.484, 5.15 - 5.35, 5.25-5.825 GHz). The substrate is printed in 0.8 mm thickness on an FR-4 board. A commercial 3D simulation tool was used to analyze surface current and electromagnetic field distribution in order to analyze the operation mode and reconfiguration principle of antenna. According to the lengths of individual patches, simulated reflection loss was compared to obtain optimized values. When it was designed with the optimized values, it satisfied WLAN bands (2.380 - 2.710, 4.900 - 5.950 GHz), if the switch is off, and 2.4 WLAN band (2.380 - 2.710 GHz). From the fabricated and measured results, measured results of return loss, gain and radiation patterns characteristics displayed for operating bands.

A Study on the Taegeuk Shaped Directional Coupler with Improved Power Split Ratio (개선된 전력 분배율을 갖는 태극형 방향성 결합기에 관한 연구)

  • 양규식;오양현;이종악
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.2 no.2
    • /
    • pp.19-24
    • /
    • 1991
  • This paper propose a new taegeuk shaped directional couper and verify the possibility of high power division rate in those directional coupler through the experiments. We took the taegeuk shaped structure in those proposed directional coupler to utilize a $3\lambda/4$ section of hybrid ring directional coupler actively, and calculated the branch admittances, which satisfied the condition of perfect matching and isolation in the center frequency, by even odd mode analyzing methodes. On the result, we knew that it can be realized a much higher power division rate than reported result in same circuit area within the producible resistance limit in the microstrip line, made the taegeuk shaped directional couplers with 0, 8, 16 dB power split ratio in the 10 GHz frequency using CGP - 502 plate, and confirmed the validity of theory through the experiments.

  • PDF

Low Conversion Loss and High Isolation 94 GHz MHEMT Mixer Using Micro-machined Ring Coupler (마이크로 머시닝 링 커플러를 사용한 낮은 변환 손실 및 높은 격리 특성의 94 GHz MHEMT 믹서)

  • An Dan;Kim Sung-Chan;Park Jung-Dong;Lee Mun-Kyo;Lee Bok-Hyung;Park Hyun-Chang;Shin Dong-Hoong;Rhee Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.6 s.348
    • /
    • pp.46-52
    • /
    • 2006
  • We report on a high performance 94 GHz MMIC resistive mixer using 70-nm metamorphic high electron mobility transistor (MHEMT) and micro-machined W-band ring coupler. A novel 3-dimensional structure of resistive mixer was proposed in this work, and the ring coupler with the surface micro-machined dielectric-supported air-gap microstrip line (DAMLs) structure was used for high LO-RF isolation. The fabricated mixer showed an excellent LO-RF isolation of -29.3 dB and a low conversion loss of 8.9 dB at 94 GHz. To our knowledge, compared to previously reported W-band mixers, the proposed MHEMT-based resistive mixer using micro-machined ring coupler has shown superior LO-RF isolation as well as similar conversion loss.