• Title/Summary/Keyword: Microstrip electrode

Search Result 6, Processing Time 0.019 seconds

Development of Atmospheric Pressure Plasma Sources in KRISS

  • Tran, T.H.;You, S.J.;Kim, J.H.;Seong, D.J.;Jeong, J.R.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.151-151
    • /
    • 2011
  • Atmospheric-pressure plasmas are used in a variety of materials processes. The lifetime of most atmospheric-pressure plasma sources is limits by electrode erosion due to energetic ion bombardment. These drawbacks were solved recently by several microplasma sources based on microstrip structure, which are more efficient and less prone to perturbations than other microplasma sources. In this work, we propose microplasma sources based on strip line and microstrip line, developed for the generation of microplasmas even in atmospheric air and analyzes these systems with microwave field simulation via comparative study with two previous microwave sources (Microstrip Spit Ring Resonator (MSRR), Microstrip Structure Source (MSS)).

  • PDF

Design and Fabrication of Microstrip Dielectric Ceramic Antenna for 900 MHz Cordless Phones (900MHz 무선전화기용 유전체 세라믹 안테나의 설계와 제작)

  • 문창호;이만형;김영일;김덕수;이성수;노용래
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.7
    • /
    • pp.699-705
    • /
    • 1998
  • This paper is about design of optimal structure of microstrip dielectric ceramic antenna with rectangular electrode patches in accordance with the cavity model and fabrication of its prototype sample operating at the frequency of 900 MHz. Results of this work can be employed as a useful too to develop and diversify ceramic antenna having superior performance and omni-directivity to that of current helical antenna.

  • PDF

Fabrication and Characteristics of X-ray Position Detection Sensor (방사선 위치 검출센서의 제작 및 특성)

  • Park, Hyung-Jun;Kim, In-Su
    • Journal of IKEEE
    • /
    • v.19 no.4
    • /
    • pp.535-540
    • /
    • 2015
  • A microstrip gas chamber (MSGC), applied to digital radiography system, was designed and constructed. The microstrip electrodes were fabricated with Chrome(Cr.). by photolithography process on Silicon(Si) wafer and glass substrate. The width of anode and cathode electrodes was $10{\mu}m$, and $290{\mu}m$, respectively. The distance of the electrodes was $100{\mu}m$, and the active area was $50{\times}50mm^2$. And the number of anode was 80. The microstrip electrodes were damaged when discharges occurred over the 600 V of anode voltage. As the result of experiments. It detected the typical output signals of the pulse width, 20 ns, under the condition that the detecting gas was Ar(90%) + $CH_4$(10%), X-ray tube voltage was 42 kV, and tube current was 1 mA.

Implementation of Passive Elements Applied LTCC Substrate for 24-GHz Frequency Band (24 GHz 대역을 위한 LTCC 기판 적용된 수동소자 구현)

  • Lee, Jiyeon;Ryu, Jongin;Choi, Sehwan;Lee, Jaeyoung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.2
    • /
    • pp.81-88
    • /
    • 2021
  • In this paper, by applying LTCC substrate, the library of the passive elements is implemented. And it can be used in 24 GHz circuits. Depending on how to use it to the circuit, it is required large value by designing the basic structures such as electrode capacitor and spiral inductor. However they are not available in high-frequency domain, because their SRF(Self-Resonant Frequency) is lower than the frequency of 24-GHz. By solving the limit, this paper devised passive elements classified for the DC and the high-frequency domain. The basic structure is suitable for low frequency under 1~2 GHz like DC. The microstrip λ/8 length stub structure is proposed to use for high-frequency like 24-GHz. The open and short stub structure operate as a capacitor and inductor respectively, also they have their impedances. Through their impedances, we can extract the value with the impedance-related equation. In this paper, the proposed passive elements are produced with the permittivity 7.5 LTCC substrate, the basic structure which are available in the DC constituted a library of capacitance of 2.35 to 30.44 pF and inductance of 0.75 to 5.45 nH, measured respectively. The stub structure available in the high-frequency domain were built libraries of capacitance of 0.44 to 2.89 pF and inductance of 0.71 to 1.56 nH, calculated respectively. The measurements have proven how to diversify value, so libraries can be built more variously. It will be an alternative to the passive elements that it is possible to integrate with the operation circuit of radar module for the frequency 24-GHz.

Implementation of Capacitor and Inductor Applied LCP Substrate for 35-GHz frequency band (35 GHz 대역을 위한 LCP 기판 적용된 커패시터 및 인덕터 구현)

  • Lee, Jiyeon;Ryu, Jongin;Choi, Sehwan;Lee, Jaeyoung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.67-75
    • /
    • 2020
  • In this paper, by applying LCP substrate, the capacitor and inductor are implemented with a variety of value that can be used in 35 GHz circuits. Depending on how to apply it to the circuit, it is required high value by designing the basic structures such as electrode capacitor and spiral inductor. However they are not available in high-frequency domain, because their SRF(Self-Resonant Frequency) is lower than the frequency of 35-GHz. By finding the limit, this paper devised classifying passive devices for the DC and the high-frequency domain. The basic structure is suitable for DC and microstrip λ/8 length stub structure can be used for high-frequency. The open and short stub structure operate as a capacitor and inductor respectively in the frequency of 35 GHz. If their impedance is known, it is possible to extract the value through the impedance-related equation. By producing with the permittivity 2.9 LCP substrate, the basic structure which are available in the DC constituted a library of capacitance of 1.12 to 13.9 pF and inductance of 0.96 to 4.69 nH, measured respectively. The stub structure available in the high-frequency domain were built libraries of capacitance of 0.07 to 2.88 pF and inductance of 0.34 to 1.27 nH, calculated respectively. The measurements have proven how to diversify value, so libraries can be built more variously. It is possible to integrate with the operation circuit of TRM(Transmit-Receive Module) for the frequency 35-GHz, it will be an alternative to the passive devices that can be properly utilized in the circuit.