• Title/Summary/Keyword: Microstrip Array Antenna

Search Result 295, Processing Time 0.028 seconds

The Design of Microstrip Array Antenna using Chebyscheff Polynomial (Chebyscheff 다항식을 이용한 Microstrip Array Antenna의 설계)

  • 이종악
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.14 no.5
    • /
    • pp.542-548
    • /
    • 1989
  • Rectangular microstrip antenna array using Chebyscheff polynomial is designed. The required relative currents in the rectangular microstrip array antenna are 1:2:2:1. The input admittance and returen loss of array antenna are calculated from transmission line model circuit include feed line. The calculated resonant frequency valused are in good agreement with measured values. Also, the sharp beam scanning characteristic of perfect electronic method is presented.

  • PDF

The Wide-band Two-element Microstrip Slot Array Antenna with the Cross-shaped Feedline

  • Shin, Ho-Sub;Kim, Nam;Jang, Yong-Woong
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.163-166
    • /
    • 2000
  • The design, numerical simulation, and an experimental implementation of two-element cross-shaped microstrip line-fed printed slot array antenna for IMT-2000 at the 2.0 GHz band is presented in this paper. The proposed antenna with relative permittivity 4.3 and thickness 1.0mm is analyzed by the Finite-Difference Time-Domain (FDTD) method. It was shown that the measured 2.0 VSWR bandwidth of one-element microstrip slot antenna is from 1.42 GHz to 2.69 GHz, which is approximately 61.8% and that of two-element microstrip slot array antenna is from 1.42 GHz to 2.56 GHz, which is approximately 57.3% And it was shown that the measured gain of one-element microstrip slot antenna is 2.75 dBi and that of two-element microstrip slot antenna is 4.75 dEi. The antennas were fabricated and tested. The measured results are in good agreements with the FDTD results.

  • PDF

A Study on a Capacitively Coupled Microstrip Array Antenna (용량성 결합 마이크로스트립 배열 안테나에 대한 연구)

  • Lee, Jong-Ig;Yeo, Junho;Baek, Woon-Seok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.63-64
    • /
    • 2015
  • In this paper, a microstrip array antenna capacitively coupled to a microstrip line is studied. The array antenna consists of uniformly spaced rectangular microstrip patches arranged close to a feeding microstrip line on a grounded dielectric substrate. The effects of various parameters, such as strip width and length, distance between adjacent patches, gap between strip patches and microstrip feed line, on the antenna performance were examined. By properly adjusting geometrical parameters, the array suitable for a high gain antenna for use in a frequency band centered at 12.5 GHz was designed.

  • PDF

The Design of microstrip line-probe feeding patch array antenna (마이크로스트립 라인-프로브 급전 패치 배열 안테나의 설계)

  • 박종렬;이윤경;윤현보
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.285-289
    • /
    • 2002
  • In this paper, microstrip line-probe feeding patch array antenna with center frequency 5.8㎓ is designed and manufactured. The microstrip line - probe feeding structure has broadband characteristic and be able to modify the array structure for improving antenna gain. In this result, microstrip line-probe feeding patch array antenna has 17.6% bandwidth and 8㏈i antenna gain, respectively.

  • PDF

A Broadband Microstrip Array Antenna for 3G Smart Antenna System Testbed

  • Rashid, Zainol Abidin Abdul;Islam, Mohammad Tariqul;Jiunn, Ng Kok
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.7 no.1
    • /
    • pp.41-58
    • /
    • 2007
  • A compact and broadband $4{\times}1$ array antenna was developed for 3G smart antenna system testbed. The $4{\times}1$ uniform linear array antenna was designed to operate at 1.885 to 2.2GHz with a total bandwidth of 315MHz. The array elements were based on the novel broadband L-probe fed inverted hybrid E-H (LIEH) shaped microstrip patch, which offers 22% size reduction to the conventional rectangular microstrip patch antenna. For steering the antenna beam, a commercial variable attenuator (KAT1D04SA002), a variable phase shifter (KPH350SC00) with four units each, and the corporate 4-ways Wilkinson power divider which was fabricated in-house were integrated to form the beamforming feed network. The developed antenna has an impedance bandwidth of 17.32% ($VSWR{\leq}1.5$), 21.78% ($VSWR{\leq}2$) with respect to center frequency 2.02GHz and with an achievable gain of 11.9dBi. The design antenna offer a broadband, compact and mobile solution for a 3G smart antenna testbed to fully characterized the IMT-2000 radio specifications and system performances.

  • PDF

The Design of Microstrip Array Antenna with Phase Lock (위상 고정 마이크로스트립 어레이 안테나 설계)

  • 강희조;오양현;고영혁
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.28A no.10
    • /
    • pp.791-798
    • /
    • 1991
  • In this paper, microstrip array antenna with the phase lock are designed to consist of main lobe and sidelobe with difference 21.97dB for sharp beam pattern using Tchebyscheff polynominals. Microstrip array antenna with phase lock of 0$^{\circ}$, 45$^{\circ}$, 90$^{\circ}$ are designed, to scan beam for 0$^{\circ}$, 6$^{\circ}$, 12$^{\circ}$ to be 1:2:2:1 for the relative current distribution. The designed microstrip array antenna with phase lock is measured in terms of various characteristics such as return loss, resonant frequency, radiation pattern, bandwidth, beamwidth, and the measurement value and theoretical value agreed with each other. Also, the patch array antenna with the relative current distribution is presented phase shift for beam scanning.

  • PDF

A Broadband Microstrip Array Antenna for 3G Smart Antenna System Testbed

  • Rashid, Zainol Abidin Abdul;Islam, Mohammad Tariqul;Jiunn, Ng Kok
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.5 no.1
    • /
    • pp.43-59
    • /
    • 2006
  • A compact and broadband $4\times1$ array antenna was developed for 3G smart antenna system testbed. The $4\times1$ uniform linear away antenna was designed to operate at 1.885 to 2.2GHz with a total bandwidth of 315MHz. The array elements were based on the novel broadband L-probe fed inverted hybrid E-H (LIEH) shaped microstrip patch, which offers 22% size reduction to the conventional rectangular microstrip patch antenna. For steering the antenna beam, a commercial variable attenuator (KAT1D04SA002), a variable phase shifter (KPH350SC00) with four units each, and the corporate 4-ways Wilkinson power divider which was fabricated in-house were integrated to form the beamforming feed network. The developed antenna has an impedance bandwidth of 17.32% $(VSWR\leq1.5)$, 21.78% $(VSWR\leq2)$ with respect to center frequency 2.02GHz and with an achievable gain of 11.9dBi. The design antenna offer a broadband, compact and mobile solution for a 3G smart antenna testbed to fully characterized the IMT-2000 radio specifications and system performances.

  • PDF

Design and Fabrication of Right Hand Circular Polarization Microstrip Patch Array Antenna for Ka Band with Mono-Pulse Feed (모노펄스 급전 구조를 갖는 Ka 대역 우회선 원편파 마이크로스트립 패치 배열 안테나 설계 및 제작)

  • Bae, Ki-Hyoung
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.297-302
    • /
    • 2005
  • Right hand circularly polarized Ka band microstrip patch array antenna was designed, manufacture and measurement were carried out. In order to lower axial ratio performance sequential rotation array technique was used. With mono-pulse feed There are sum and delta channel. Waveguide to microstrip transition was used. The 512 array antenna was performed which axial ratio is about 1.ldB in the half power beam width and also 1.ldB at the normal direction. Directivity gain of designed antenna is 32dB.

  • PDF

A Design for Microstrip Dolph-Chebyshev Array Antenna Using Cavity Model Analysis (Cavity 모델 해석을 이용한 마이크로스트립 Dolph-Chebyshev 배열 안테나의 설계)

  • 민경일;오승협
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.4
    • /
    • pp.1-6
    • /
    • 1992
  • The method of designing microstrip array antenna for low sidelobe level and narrow beam-width using Dolph-Chebyshev array is presented. The widths of microstrip antenna corresponding to excitation coefficients obtained by Dolph-Chebyshev array polynomials is decided by calculating radiation resistance using cavity model analysis. The cascaded array microstrip antenna composed of 10-elements with resonant frequency to be 9.43[GHz] is fabricated by using design method presented in this paper. The experimental results of relatively good characteristics show that its gain, sidelobe level and beam-width are 9[dB], -22[dB] and 8.7[$^{\circ}$].

  • PDF

A Study On The Microstrip Slot Array Antenna Design (마이크로스트립 슬롯 배열 안테나 설계에 관한 연구)

  • 한석진;박익모;신철재
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.147-150
    • /
    • 1999
  • A T-shaped microstripline-fed printed slot array antenna having wide bandwidth, high gain, and narrow bandwidth is presented in this paper. The proposed antenna is analyzed by using the transmission line model method. We fabricated 4$\times$1 microstrip slot array antenna and measured its return loss and radiation pattern. The maximum bandwidth of this array antenna is from 1.43 ㎓ to 2.60 ㎓, which is 58.1% for the VSWR $\leq$ 2.

  • PDF