• Title/Summary/Keyword: Microscopic simulation model

Search Result 112, Processing Time 0.035 seconds

Impact Analysis of Air Quality of Mobile Sources using Microscopic Emission and Dispersion Model (미시적 탄소배출량 및 대기확산 모형을 이용한 이동오염원에 의한 대기 질 영향 분석)

  • Yang, Choong Heon;Yang, Inchul;Yoon, Chun Joo;Sung, Jung Gon
    • International Journal of Highway Engineering
    • /
    • v.15 no.4
    • /
    • pp.167-175
    • /
    • 2013
  • PURPOSES : The objective of this study is to investigate the capability of the combined model of traffic simulation, emission and air dispersion models on the impact analysis of air quality of mobile sources such as vehicles. METHODS : The improvement of the quality of life brings about the increasing interest of the public environment. Many endeavors including the travel demand management, the application of the state-of-the-art ITS technologies, the promotion of eco-friendly vehicles have been tried in transportation area to reduce the modal emissions. Especially, it is expected that the increasing number of eco-friendly vehicles in the road network would be able to reduce the pipe-tail emissions tremendously. From this perspective, we have performed a study on the impact analysis of the popularization of the eco-friendly vehicle in the place of the fossil fuel energy powered vehicles on the surrounding air quality using the combined framework of microscopic traffic simulation, emission and air dispersion model. RESULTS : The combined model successfully captured the effect of moving to the eco-friendly vehicles on the air quality, and the results showed that the increasing usage of eco-friendly vehicles can improve the surrounding air quality tremendously and that the air dispersion model plays a crucial role in the investigation of the air quality change around the main corridor. CONCLUSIONS : This study demonstrated the capability of the combined model showing the spatio-tempral change of emission concentration.

Static Optimization Model for Congested Signalized Intersections (혼잡 신호교통로 제어를 위한 최적화 모형 개발)

  • 김영찬
    • Journal of Korean Society of Transportation
    • /
    • v.10 no.3
    • /
    • pp.75-102
    • /
    • 1992
  • 지난 수십년간 수많은 신호교차로제어모형이 제시되어 왔으나 과포화교차로를 특별히 다루는 기법은 거의 없었다. 본고에서는 과포화상태의 신호교차로제어를 위한 최적화모형이 제시된다. 지체도최소화나 연동폭최대화가 전통적인 제어목표로 사용되어 왔으나 혼잡교차로 제어에는 생산성최대화(maximum productivity)가 적절하며 본 모형에 사용되었다. 제시된 최적화모형은 Mixed Integer Linear Programming의 형태를 취한다. 본 모형은 두 개의 교차로 문제에 적용되었으며, 모형화 과정에 사용된 가정들의 적절함이 민감도분석에 의해 증명되었다. 최적해의 검증을 위하여 microscopic simulation model인 TRAF-NETSIM을 사용하였다.

  • PDF

Direct Numerical Simulation of Composite laminates Under low velocity Impact (저속충격을 받는 적층복합재료 평판의 직접 수치모사)

  • Ji, Kuk-Hyun;Kim, Seung-Jo
    • Composites Research
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2006
  • Prediction of damage caused by low-velocity impact in laminated composite plate is an important problem faced by designers using composites. Not only the inplane stresses but also the interlaminar normal and shear stresses playa role in estimating the damage caused. But it is well known that the conventional approach based on the homogenization has the limit in description of damage. The work reported here is an effort in getting better predictions of dynamic behavior and damage in composite plate using DNS approach. In the DNS model, we discretize the composite plates through separate modeling of fiber and matrix for the local microscopic analysis. In the view of microscopic mechanics with DNS model, interlaminar stress behaviors in the inside of composite materials are investigated and compared with the results of the homogenized model which has been used in the conventional approach to impact analysis. Also the multiscale model based on DNS concept is developed in order to enhance the effectiveness of impact analysis, and we present the results of multiscale analysis considering micro and macro structures simultaneously.

HIP Diffusion Bonding of Two Types of Superalloys for Engine Blisk Applications (엔진 블리스크 제조를 위한 초내열합금 이종재의 HIP Diffusion Bonding)

  • 나영상;황형철;염종택;권영삼;박노광
    • Transactions of Materials Processing
    • /
    • v.12 no.1
    • /
    • pp.60-65
    • /
    • 2003
  • HIP diffusion bonding of Ni-based superalloys, cast Mar-M247 (MM247) and Udimet 720 (U720) powder, was experimentally and numerically studied. Subsolvus HIP treatment was optimized by investigating the variations of high temperature tensile properties of HIP-bonded specimens with powder size, HIP'ing time, etc. While the tensile strength at high temperatures showed no detectable changes, the tensile elongation and reduction in area were slightly increased as the powder size decreased from -140 mesh to -270 mesh. While as-HIP'ed U720 showed a high tensile strength comparable to that of lorded U720 alloy, the HIP diffusion-bonded specimen showed a strength lower than the forged U720 alloy and the cast MM247 alloy The increase of HIP'ing tune from 2 hours to 3 hours resulted in a rapid risc of tensile strength and elongation due to the disappearence of microvoids in the cast MM247. FEM simulation for HIP process was conducted by applying the McMeeking micromechanical model, which uses power-law creep model as constitutive equations. ABAQUS user subroutine CREEP with an implemented microscopic model was used for the simulation. Numerical simulation was shown to be essential for the near-net shape manufacturing as well as the HIP process optimization.

Development of Free Flow Speed Estimation Model by Artificial Neural Networks for Freeway Basic Sections (인공신경망을 이용한 고속도로 기본구간 자유속도 추정모형개발)

  • Kang, Jin-Gu;Chang, Myung-Soon;Kim, Jin-Tae;Kim, Eung-Cheol
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.3 s.74
    • /
    • pp.109-125
    • /
    • 2004
  • In recent decades, microscopic simulation models have become powerful tools to analyze traffic flow on highways and to assist the investigation of level of service. The existing microscopic simulation models simulate an individual vehicle's speed based on a constant free-flow speed dominantly specified by users and driver's behavior models reflecting vehicle interactions, such as car following and lane changing. They set a single free-flow speed for a single vehicle on a given link and neglect to consider the effects of highway design elements to it in their internal simulation. Due to this, the existing models are limitted to provide with identical simulation results on both curved and tangent sections of highways. This paper presents a model developed to estimate the change of free-flow speeds based on highway design elements. Nine neural network models were trained based on the field data collected from seven different freeway curve sections and three different locations at each section to capture the percent changes of free-flow speeds: 100 m upstream of the point of curve (PC) and the middle of the curve. The model employing seven highway design elements as its input variables was selected as the best : radius of curve, length of curve, superelevation, the number of lanes, grade variations, and the approaching free-flow speed on 100 m upstream of PC. Tests showed that the free-flow speeds estimated by the proposed model were statistically identical to the ones from the field at 95% confidence level at each three different locations described above. The root mean square errors at the starting and the middle of curve section were 6.68 and 10.06, and the R-squares at these points were 0.77 and 0.65, respectively. It was concluded from the study that the proposed model would be one of the potential tools introducing the effects of highway design elements to free-flow speeds in simulation.

School Zone Safety Improvement Using Smart Bollard (Smart Bollard를 이용한 어린이보호구역에서의 안전성 제고에 관한 연구)

  • Kim, Hoe Kyoung;Lim, Jae Moon;Sul, Jae Hoon;Oh, Yun Pyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.251-259
    • /
    • 2013
  • This paper is aimed to introduce to a moving bollard (i.e., smart bollard) to improve the pedestrian safety along the crosswalk in the school zone as a means to physically separate pedestrians and approaching vehicles, to propose the appropriate criteria for its installation and implementation from the traffic engineering perspective, and to evaluate its effectiveness with the microscopic simulation model. The simulation results indicate that implementing the smart bollard results in the decrease of average approaching speed and traffic throughput and the most critical factors affecting its effectiveness are yellow time of the traffic signal directly associated with the location of the advance warning sign and its operation time, 5~6 seconds and 2~3 seconds, respectively.

Development of an Interface Module with a Microscopic Simulation Model for COSMOS Evaluation (미시적 시뮬레이터를 이용한 실시간 신호제어시스템(COSMOS) 평가 시뮬레이션 환경 개발)

  • Song, Sung-Ju;Lee, Seung-Hwan;Lee, Sang-Soo
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.2 s.73
    • /
    • pp.95-102
    • /
    • 2004
  • The COSMOS is an adaptive traffic control systems that can adjust signal timing parameters in response to various traffic conditions. To evaluate the performance of the COSMOS systems, the field study is only practical option because any evaluation tools are not available. To overcome this limitation, a newly integrated interfacing simulator between a microscopic simulation program and COSMOS was developed. In this paper, a detector module and a signal timing module as well as general feature of the simulator were described. A validation test was performed to verify the accuracy of the data flow within the simulator. It was shown that the accuracy level of information from the simulator was high enough for real application. Several practical comments on further studies were also included to enhance the functional specifications of the simulator.

A design of a low power mobile multimedia system architecture (저전력 모바일 멀티미디어 시스템 구조 설계에 관한 연구)

  • Lee, Eun-Seo;Lee, Jae-Sik;Kim, Byung-Il;Chang, Tae-Gyu
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.231-233
    • /
    • 2005
  • For the low-power design of the mobile multimedia system architecture, this paper modeling the mobile multimedia system and analysis the power consumption profile about the whole communication environment. The mobile system model consist of air interface, RIP front-end, base-band processing module and human interface. For the result of power consumption profile analysis, the power consumption of multimedia processing is above 60% compare to the whole power consumption in mobile multimedia system. To minimize the power consumption in processing module which consumes the large power, this paper proposed the Microscopic DVS technique which applies the optimum voltage for the each multimedia frame. For the simulation result, proposed power minimization technique reduce the power consumption about 30%.

  • PDF

Development of Lane-changing Model for Two-Lane Freeway Traffic Based on CA (Cellular Automata 기반 2차로 고속도로 차로변경모형 개발)

  • Yoon, Byoung Jo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3D
    • /
    • pp.329-334
    • /
    • 2009
  • The various behaviors of vehicular traffic flow are generated through both car-following and lane-changing behaviors of vehicles. Especially lane-usage varies by lane-changing behaviors. In the area of microscopic vehicle simulation, a lane-changing model connected to a car-following model parallel is essential to generate both various traffic flows relationships and laneusages. In Korea, some studies on car-following models have been reported, but few studies for lane-changing models stay in the beginning stage. In this paper, a two-lane changing model for the simulation modeling of large freeway network is introduced. The lane-changing model is developed based on CA (Cellular Automata) model. The developed model is parallel combined with an existing CA car-following model and tested on a closed link system. The results of simulation show that the developed model generates the various behaviors of lane usage, which existing CA lane-changing models could not generate. The presented model is expected to be used for the simulation of more various freeway traffic flows.

A Material Simulation of High-Strain-Rate Deformation with Dislocations and Vacancies (전위 및 공공을 고려한 고변형률 변형에 대한 재료 시뮬레이션)

  • Choi, Deok-Kee;Ryu, Han-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1306-1313
    • /
    • 2004
  • This paper addresses a theoretical approach to calculate the amount of the stored energy during high strain-rate deformations using atomistic level simulation. The dynamic behavior of materials at high strain-rate deformation are of great interest. At high strain-rates deformations, materials generate heat due to plastic work and the temperature rise can be significant, affecting various properties of the material. It is well known that a small percent of the energy input is stored in the material, and most of input energy is converted into heat. However, microscopic analysis has not been completed without construction of a material model, which can simulate the movement of dislocations and vacancies. A major cause of the temperature rise within materials is traditionally credited to dislocations, vacancies and other defects. In this study, an atomistic material model for FCC such as copper is used to calculate the stored energy.