• Title/Summary/Keyword: Microscopic emission model

Search Result 12, Processing Time 0.026 seconds

Impact Analysis of Air Quality of Mobile Sources using Microscopic Emission and Dispersion Model (미시적 탄소배출량 및 대기확산 모형을 이용한 이동오염원에 의한 대기 질 영향 분석)

  • Yang, Choong Heon;Yang, Inchul;Yoon, Chun Joo;Sung, Jung Gon
    • International Journal of Highway Engineering
    • /
    • v.15 no.4
    • /
    • pp.167-175
    • /
    • 2013
  • PURPOSES : The objective of this study is to investigate the capability of the combined model of traffic simulation, emission and air dispersion models on the impact analysis of air quality of mobile sources such as vehicles. METHODS : The improvement of the quality of life brings about the increasing interest of the public environment. Many endeavors including the travel demand management, the application of the state-of-the-art ITS technologies, the promotion of eco-friendly vehicles have been tried in transportation area to reduce the modal emissions. Especially, it is expected that the increasing number of eco-friendly vehicles in the road network would be able to reduce the pipe-tail emissions tremendously. From this perspective, we have performed a study on the impact analysis of the popularization of the eco-friendly vehicle in the place of the fossil fuel energy powered vehicles on the surrounding air quality using the combined framework of microscopic traffic simulation, emission and air dispersion model. RESULTS : The combined model successfully captured the effect of moving to the eco-friendly vehicles on the air quality, and the results showed that the increasing usage of eco-friendly vehicles can improve the surrounding air quality tremendously and that the air dispersion model plays a crucial role in the investigation of the air quality change around the main corridor. CONCLUSIONS : This study demonstrated the capability of the combined model showing the spatio-tempral change of emission concentration.

A Review of Emissions Studies for Transportation Engineering (교통환경분야의 국내외 연구동향 및 시사점 (차량배출량 관련 연구를 중심으로))

  • Gang, Jong-Ho;Lee, Cheong-Won
    • Journal of Korean Society of Transportation
    • /
    • v.25 no.6
    • /
    • pp.7-18
    • /
    • 2007
  • There are few studies on air pollution due to vehicle emissions in spite of the importance of this field. Therefore, this study describes trends and suggests implications through analysis relating to existing emissions research. This study has been divided into three areas. The first part is about estimating vehicle emissions. In this part, the authors analyze limits in ways of calculating emissions in the existing macroscopic view and then suggest the development of a model for calculating emissions considering velocity and acceleration. These variables are a function of traffic and individual driving behavior in the microscopic view. The second part is about management techniques for reducing vehicle emissions. The traffic management techniques for reducing vehicle emissions should conform to regional characteristics. The final part is about traffic operation for reducing vehicle emissions. The authors suggest the development of a micro-simulator and then the development of strategies for traffic operation. It is necessary to design better models estimating emissions and then, using real time data, to make a monitoring system simulating emission rates. This study serves as a literature review to make a foundation for further research about emissions research for transportation engineering.

A combined experimental and numerical study on the plastic damage in microalloyed Q345 steels

  • Li, Bin;Mi, Changwen
    • Structural Engineering and Mechanics
    • /
    • v.72 no.3
    • /
    • pp.313-327
    • /
    • 2019
  • Damage evolution in the form of void nucleation, propagation and coalescence is the primary cause that is responsible for the ductile failure of microalloyed steels. The Gurson-Tvergaard-Needleman (GTN) damage model has proven to be extremely robust for characterizing the microscopic damage behavior of ductile metals. Nonetheless, successful applications of the model on a given metal type are limited by the correct identification of damage parameters as well as the validation of the calculated void growth rate. The purpose of this study is two-fold. First, we aim to identify the damage parameters of the GTN model for Q345 steel (Chinese code), due to its extensive application in mechanical and civil industries in China. The identification of damage parameters is facilitated by the well-suited response surface methodology, followed by a complete analysis of variance for evaluating the statistical significance of the identified model. Second, taking notched Q345 cylinders as an example, finite element simulations implemented with the identified GTN model are performed in order to analyze their microscopic damage behavior. In particular, the void growth rate predicted from the simulations is successfully correlated with experimentally measured acoustic emissions. The quantitative correlation suggests that during the yielding stage the void growth rate increases linearly with the acoustic emissions, while in the strain-hardening and softening period the dependence becomes an exponential function. The combined experimental and finite element approach provides a means for validating simulated void growth rate against experimental measurements of acoustic emissions in microalloyed steels.

A Study on the Implementation of Microscopic Traffic Simulation Model by Using GIS (GIS를 이용한 미시적 수준의 교통모형 구현에 관한 연구)

  • Kim, Byeongsun
    • Spatial Information Research
    • /
    • v.23 no.4
    • /
    • pp.79-89
    • /
    • 2015
  • This study aims to design and implement a traffic model that can simulate the traffic behavior on the microscopic level by using the GIS. In the design of the model, the vehicle in the simulation environment recognizes the GIS road centerline data as road network data reflecting number of lanes, speed limit and so on. In addition, the behavior model was designed by dividing functions into the environmental perception model, time headway distribution model, car following model, and lane changing model. The implemented model was applied to Jahamun-road of Jongno-gu district to verify the accuracy of the model. As a result, the simulation results on the Jahamun-road had no great error compared with the actual observation data. In the aspect of usability of model, it is judged that this model will be able to effectively contribute to analysis of amount of carbon emission by traffic, evaluation of traffic flow, plans for location of urban infrastructure and so on.

A Study of Calculation Methodology of Vehicle Emissions based on Driver Speed and Acceleration Behavior (차량 주행상태를 고려한 차량 배출가스 산정 모형 구축)

  • Han, Dong-Hui;Lee, Yeong-In;Jang, Hyeon-Ho
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.5
    • /
    • pp.107-120
    • /
    • 2011
  • Traffic signal is one of the major factors that affect the amount of vehicle emissions on urban highway. The amount of vehicle emissions in urban area is highly affected by the vehicle's cruising speeds heavily influenced by the traffic signal lighting conditions. It was attempted in this study to trace the changing patterns of the vehicle emissions by collecting the emission data from a set of simulation studies and by categorizing vehicle cruising conditions into four different groups: idling, acceleration, deceleration, and running at a constant speed. Authors propose a simple emission model prepared based on Kinematic theory. The validation test results showed that the amount of the emission estimated by the proposed model was relatively satisfactory compared to the one of the existing model employing the average speed data only as the determinant.

A development of CO2 emission estimation model based on the spatial configuration of street networks, building capacity and building usages (도로부문 이산화탄소 배출량 추정 모델의 개발: 도로망, 건물규모, 건물용도의 공간배치를 중심으로)

  • Kim, Young-Ook;Kim, Kyoung-Yong;Park, Hoon-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.3879-3887
    • /
    • 2014
  • This paper presents a model to estimate the amount of $CO_2$ emitted by cars in cities. Based on the spatial configuration of street networks, building masses and usages, it first develops a deductive model to combine them in a way to account for $CO_2$ emission amount by cars. It then proceed to validate model behaviours through a series of simulations on some ideal urban settings and finally calibrate it following its real application to the five case study cities in Korea. In contrast to the conventional 'top-down' approaches, we expect our model to have high utilities, particularly in the field of urban planning and design, where we cannot but deal directly with the spatial configuration of urban components and microscopic human activities.

Evaluation of Microscopic Deformation Behaviors of Metal Matrix Composite due to Heat Treatment by means of SFC Test and Acoustic Emission (음향방출과 SFC 시험법에 의한 금속복합재료의 기지재 열처리 효과에 따른 미시적 변형기구 특성 평가)

  • Kang, Moon-Phil;Lee, Joon-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.5
    • /
    • pp.381-389
    • /
    • 2000
  • Metal matrix composite(MMCs) have been rapidly becoming one of the strongest candidates for structural materials for high temperature application. It is well recognized that MMCs always experience at least one large cool-down from processing temperature before my significant applied service loading. Due to the large difference in thermal expansion coefficient between the fiber and matrix, large thermal residual stresses generally develop in composites. It was reported from many previous studies that the effects of thermal residual stress on mechanical properties and fracture behavior were much more complex and dramatic than conventional engineering materials. Therefore it is crucial to evaluate the effect of heat treatment which changes the characteristic of distribution of thermal residual stress in MMCs. Single fiber composite(SFC) test based on the balance in a micromechanical model is a quite convenient method to evaluate interfacial shear strength(IFSS) and the failure mode of composite. In this study the effect of heat treatment on IFSS and the microscopic failure mechanism of MMC is investigated by combining acoustic emission(AE) technique with SFC test. The characteristic of AE signal, IFSS and microscopic failure mechanism due to heat treatment condition is discussed.

  • PDF

Evaluation on Mechanical Properties of a Smart Composite Using the finite Element Method and the Acoustic Emission Technique (FEM과 AE를 이용한 지적복합재료의 기계적특성 평가)

  • Park, Young-Chul;Lee, Jin-Kyung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.3
    • /
    • pp.233-239
    • /
    • 2004
  • Smart material is used in various applications such as for glass frame, for medical instruments and for a part of sensors. Smart composite materials ran be applied to a part of aircraft and to the on-line monitoring system for industrial structures, using the shape memory effect. However, it is very difficult to simulate and analyze the shape memory effect in smart composites. In this paper, a two dimensional axisymmetric model was proposed to analyze the smart composite of one fiber and matrix using the finite element method(FEM). The finite element analysis was carried out in two renditions of the room temperature(293K) and a higher temperature (363K). The results we.e compared with the experimental results to confirm the validity of the analysis. In addition, the acoustic emission(AE) technique was used to study the microscopic damage behavior and the effect of pre-strains on TiNi/A16061 shape memory alloy composite.

Estimating Carbon Emissions due to Freeway Incidents by Using Macroscopic Traffic Flow Models (거시적 교통류모형을 이용한 고속도로 돌발상황에 따른 탄소배출량 산정연구)

  • Son, Young Tae;Han, Kyu Jong
    • International Journal of Highway Engineering
    • /
    • v.18 no.1
    • /
    • pp.119-129
    • /
    • 2016
  • PURPOSES : The purpose of this study is to develop a methodology for estimating additional carbon emissions due to freeway incidents. METHODS : As our country grows, our highway policy has mainly neglected the environmental and social sectors. However, with the formation of a national green growth keynote and an increase in the number of people interested in environmental and social issues, problems related to social issues, such as traffic accidents and congestion, and environmental issues, such as the impact of air pollution caused by exhaust gases that are emitted from highway vehicles, are beginning to be discussed. Accordingly, studies have been conducted on a variety of environmental aspects in the field of road transport, and for the quantitative calculation of greenhouse gas emissions, using various methods. However, in order to observe the effects of carbon emissions, microscopic simulations must use many difficult variables such as cost, analysis time, and ease of analysis process. In this study, additional greenhouse gas emissions that occur because of highway traffic accidents were classified by type (incident handling time, number of lanes blocked, freeway level of service), and the annual additional emissions based on incidents were calculated. According to the results, congestion length and emissions tend to increase with an increase in incident clearance time, number of occupied lanes, and worsening level of service. Using this data, we analyzed accident data on the Gyeong-bu Expressway (Yang-Jae IC - Osan IC) for a year. RESULTS : Additional greenhouse gas emissions that occur because of highway traffic accidents were classified by type (incident handling time, number of lanes blocked, freeway level of service) and annual additional emissions caused by accidents were calculated. CONCLUSIONS : In this study, a methodology for estimating carbon emissions due to freeway incidents was developed that incorporates macroscopic flow models. The results of the study are organized in the form of a look-Up table that calculates carbon emissions rather easily.

Analysis of the Effect of Carbon Dioxide Reduction by Changing from Signalized Intersection to Roundabout using Tier 3 Method (Tier 3 방법을 이용한 회전교차로 도입에 따른 $CO_2$ 감축효과)

  • Lee, Jung-Beom;Lee, Seung-Hoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.5
    • /
    • pp.105-112
    • /
    • 2011
  • Delay reduction of vehicles at the intersection is highly dependent on the signal operation method. Improper traffic operation causes the violation of the traffic regulations and increasing traffic congestion. Delay because of congestion has contributed to the increase in carbon dioxide in the atmosphere. The focus of this paper is to measure the amount of carbon dioxide when the intersection is changed to roundabout. Even though, Intergovernmental Panel on Climate Change(IPCC) recommends Tier 1 method to measure the amount of greenhouse gas from vehicles, this paper used Tier 3 method because we could use the data of average running distance per each vehicle model. Two signalized intersections were selected as the study area and the delay reductions of roundabout operation were estimated by VISSIM microscopic simulation tool. The control delay for boksu intersection reduced from 28.6 seconds to 4.4 seconds and the KRIBB intersection sharply reduced from 156.4 seconds to 23.6 seconds. In addition, carbon dioxide for two intersections reduced to 646.5 ton/year if the intersection is changed to roundabout. Future research tasks include testing the experiment for networks, as well as for various intersection types.