• Title/Summary/Keyword: Microscope objective

Search Result 221, Processing Time 0.031 seconds

The Optical Design of Miniaturized Microscope Objective for CARS Imaging Catheter with Fiber Bundle

  • Rim, Cheon-Seog
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.424-430
    • /
    • 2010
  • In coherent anti-Stokes Raman scattering (CARS) microscopy reported until now, conventional microscope objectives are used, so that they are limited for introduction into a living body. Gradient-index (GRIN) rod lenses might be a solution for miniaturized microscope objectives for in-vivo CARS microscopy. However, due to the inherent large amount of chromatic aberration, GRIN rod lenses cannot be utilized for this purpose. CARS imaging catheter, composed of miniaturized microscope objective and fiber bundle, can be introduced into a living body for minimally invasive diagnosis. In order to design the catheter, we have to first investigate design requirements. And then, the optical design is processed with design strategies and intensive computing power to achieve the design requirements. We report the miniaturized objective lens system with diffraction-limited performance and completely corrected chromatic aberrations for an in-vivo CARS imaging catheter.

Design and Analysis of an Objective Lens for a Scanning Electron Microscope by Coupling FE Analysis and Ray Tracing (유한요소해석과 광선추적을 연계한 주사전자 현미경 대물렌즈의 설계 및 해석)

  • Park, Keun;Lee, Jae-Jin;Park, Man-Jin;Kim, Dong-Hwan;Jang, Dong-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.11
    • /
    • pp.92-98
    • /
    • 2009
  • The scanning electron microscope (SEM) contains an electron optical system in which electrons are emitted and moved to form a focused beam, and generates secondary electrons from the specimen surfaces, eventually making an image. The electron optical system usually contains two condenser lenses and an objective lens. The condenser lenses generate a magnetic field that forces the electron beams to form crossovers at desired locations. The objective lens then focuses the electron beams on the specimen. The present study covers the design and analysis of an objective lens for a thermionic SEM. A finite element (FE) analysis for the objective lens is performed to analyze its magnetic characteristics for various lens designs. Relevant beam trajectories are also investigated by tracing the ray path of the electron beams under the magnetic fields inside the objective lens.

A study of the mirror design and the fabrication for an X-ray microscope

  • Kim, Woo-Soon;Kim, Kyong-Woo;Yoon, Kwon-Ha;Kim, Dong-Hyun;Namba, Yoshiharu
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.59-64
    • /
    • 2002
  • One of the exciting research areas of the X-ray microscope is the observation of a living cell. In order to study a living cell with high resolution the order of the several tens nm, we need to improve the efficiency of mirrors which are components of an X-ray microscope system. In this paper we present the mirror design and manufacture to give a high resolution and reflectivity. We designed Wolter type I the condenser and objective mirror with the several tens of nm resolution. According to mirror design. we made the program using the visual basic. Using the new processing method as well as the ultra-precision diamond cutting, we directly processed the inside of an aluminum hulk in order to manufacture mirrors. From the experimental result, we think that the new processing method will improve a high reflectivity through the improved cutting tools and optimum cutting conditions.

  • PDF

Design of an Endoscopic Microscope Objective Composed of GRIN(Gradient-Index) Lens with Scanning Devices (GRIN 렌즈로 구성된 주사방식의 내시현미경 대물렌즈의 설계)

  • Kim, Keyong-Jeong;Rim, Cheon-Seog
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.6
    • /
    • pp.311-318
    • /
    • 2009
  • We present an attractive real time in-vivo endoscopic microscope with a resolution of submicron, in which two kinds of optical correcting plates are inserted to eliminate higher order spherical aberration and field curvature. And, since the conventional objective lens is replaced to GRIN lenses with diameter of 1 mm, the above endoscopic microscope can be effectively utilized to invade minimally for live animals.

The Optical Design of Probe-type Microscope Objective for Intravital Laser Scanning CARS Microendoscopy

  • Rim, Cheon-Seog
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.431-437
    • /
    • 2010
  • A stack of gradient-index (GRIN) rod lenses cannot be used for coherent anti-Stokes Raman scattering (CARS) microendoscopy for insertion to internal organs through a surgical keyhole with minimal invasiveness. That's because GRIN lens has large amount of inherent chromatic aberrations in spite of absolutely requiring a common focus for pump and Stokes beam with each frequency of ${\omega}_p$ and ${\omega}_S$. For this endoscopic purpose, we need to develop a long slender probe-type objective, namely probe-type microscope objective (PMO). In this paper, we introduce the structure, the working principle, and the design techniques of PMO which is composed of a probe-type lens module (PLM) and an adaptor lens module (ALM). PLM is first designed for a long slender type and ALM is successively designed by using several design parameters from PLM for eliminating optical discords between scanning unit and PLM. A combined module is optimized again to eliminate some coupling disparities between PLM and ALM for the best PMO. As a result, we can obtain a long slender PMO with perfectly diffraction-limited performance for pump beam of 817 nm and Stokes beam of 1064 nm.

Twin-Image Elimination in In-line Digital Holography Microscope (In-line 디지털 홀로그래피 현미경에서 쌍둥이 상 제거연구)

  • Cho, Hyung-Jun;Yu, Young-Hun
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.2
    • /
    • pp.117-121
    • /
    • 2007
  • A fundamental problem in the in-line digital holography microscope is that the real image and virtual image and zero-order image are not separated spatially. In this paper, we have eliminated the zero-order noise by an averaging method and the twin image is divided using a geometrical set-up in an in-line digital holographic microscope. The size of the virtual image depends on the distance between the objective lens and the hologram plane and on the distance between the hologram plane and the image plane. We found that the virtual image size is smallest when the distance between the objective lens and the hologram plane is equal to the back focal length of the objective lens. We could divide the virtual image and real image by controlling the distance between the hologram plane and the objective lens.

Signal increasing method in confocal scanning microscopy in fluorescence mode using curved mirror

  • Kang, Dong-kyun;Seo, Jung-woo;Gweon, Dae-gab
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.99.3-99
    • /
    • 2001
  • In fluorescence mode confocal scanning microscope, level of detected signal is very low. In object scanning type confocal scanning microscope, the additional optical system with objective lens and plane mirror was proposed to increase signal intensity, but there was none for beam scanning type confocal scanning microscope. We propose reflecting optical systems which improve signal intensity in beam scanning type confocal scanning microscope. We choose one of the proposed optical systems and design the optical system, i.e., select optical components and assign distances between the selected components. To design the optical system, we use finite ray tracing method and make cost function to be minimized.

  • PDF

A Study on Design and Analysis for Magnetic Lenses of a Scanning Electron Microscope using Finite Element Method (유한요소법을 사용한 주사전자 현미경의 전자렌즈 설계 및 해석에 관한 연구)

  • Park, Keun;Jung, Hyun-Woo;Park, Man-Jin;Kim, Dong-Hwan;Jang, Dong-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.9
    • /
    • pp.95-102
    • /
    • 2007
  • The scanning electron microscope (SEM) is one of the most popular instruments available for the measurement and analysis of the micro/nano structures. It is equipped with an electron optical system that consists of an electron beam source, magnetic lenses, apertures, deflection coils, and a detector. The magnetic lenses playa role in refracting electron beams to obtain a focused spot using the magnetic field driven by an electric current from a coil. A SEM column usually contains two condenser lenses and an objective lens. The condenser lenses generate a magnetic field that forces the electron beams to form crossovers at desired locations. The objective lens then focuses the electron beams on the specimen. The present work concerns finite element analysis for the electron magnetic lenses so as to analyze their magnetic characteristics. To improve the performance of the magnetic lenses, the effect of the excitation current and pole-piece design on the amount of resulting magnetic fields and their peak locations are analyzed through the finite element analysis.

Axillary Approach for Thyroidectomy under Operating Microscope (수술현미경하 액와접근 갑상선 절제술)

  • Choi, Jong-Ouck;Jun, Byung-Sun;Lee, Jang-Woo;Lee, Dong-Jin;Sohn, Hang-Soo
    • Korean Journal of Head & Neck Oncology
    • /
    • v.23 no.1
    • /
    • pp.32-36
    • /
    • 2007
  • Background and Objective:A post-operative hypertrophic scar of the anterior neck is the leading complaint of the patients who underwent conventional thyroid surgery. In order to minimize the post-operative scar of the anterior neck, we performed thyroidectomy via axillary approach using operating microscope and a specialized retractor to determine technical feasibility. Patients and Methods:From January 2005 to December 2006, we performed thyroidectomy via axillary approach under operating microscope(f=400mm, ${\times}2.5$;OPMI $pico^{(R)}$;Zeiss, Germany) for benign unilateral nodule in 25 cases(all female, average age 34.5yrs). Under general anesthesia less than 7cm of skin incision was made in the axilla of ipsilateral side. A subcutaneous tunnel went over the pectoralis major muscle and the clavicle, and then through the sternocleidomastoid muscle and sternothyroid muscle was excised. The area around the thyroid was sufficiently dissected, and then a retractor designed for exposure via axillary approach was placed within the tunnel and under operating microscope thyroidectomy was performed. Results:There were 17 cases of thyroid nodulectomy and 8 cases of subtotal lobectomy. The mean average operative time was 102.64minutes. Postoperative complications included one case of postoperative bleeding, one case of temporary vocal cord paralysis, two cases of delayed wound healing, two cases of paresthesia of shoulder and arm, and two cases of hypertrophic scar of the axilla. Postoperative histopathology includes 17 cases of adenomatous hyperplasia, six cases of cyst, and two cases of follicular adenoma. For all cases hospitalization period was two days. Conclusion:Thyroidectomy via axillary approach under operating microscope has a good cosmetic advantage without a post-operative scar of the anterior neck. The procedure is simple due to direct vision using operating microscope, easy to identify important structures by magnifying them, and therefore surgical time can be reduced.