• 제목/요약/키워드: Microsatellite Markers

Search Result 420, Processing Time 0.021 seconds

Association Analysis of Charcoal Rot Disease Resistance in Soybean

  • Ghorbanipour, Ali;Rabiei, Babak;Rahmanpour, Siamak;Khodaparast, Seyed Akbar
    • The Plant Pathology Journal
    • /
    • v.35 no.3
    • /
    • pp.189-199
    • /
    • 2019
  • In this research, the relationships among the 31 microsatellite markers with charcoal rot disease resistance related indices in 130 different soybean cultivars and lines were evaluated using association analysis based on the general linear model (GLM) and the mixed linear model (MLM) by the Structure and Tassel software. The results of microsatellite markers showed that the genetic structure of the studied population has three subpopulations (K=3) which the results of bar plat also confirmed it. In association analysis based on GLM and MLM models, 31 and 35 loci showed significant relationships with the evaluated traits, respectively, and confirmed considerable variation of the studied traits. The identified markers related to some of the studied traits were the same which can probably be due to pleiotropic effects or tight linkage among the genomic regions controlling these traits. Some of these relationships were including, the relationship between Sat_252 marker with amount of charcoal rot disease, Satt359, Satt190 and Sat_169 markers with number of microsclerota in stem, amount of charcoal rot disease and severity of charcoal rot disease, Sat_416 marker with number of microsclerota in stem and amount of charcoal rot disease and the Satt460 marker with number of microsclerota in stem and severity of charcoal rot disease. The results of this research and the linked microsatellite markers with the charcoal rot disease-related characteristics can be used to identify the suitable parents and to improve the soybean population in future breeding programs.

DNA fingerprinting analysis for soybean (Glycine max) varieties in Korea using a core set of microsatellite marker (핵심 Microsatellite 마커를 이용한 한국 콩 품종에 대한 Fingerprinting 분석)

  • Kwon, Yong-Sham
    • Journal of Plant Biotechnology
    • /
    • v.43 no.4
    • /
    • pp.457-465
    • /
    • 2016
  • Microsatellites are one of the most suitable markers for identification of variety, as they have the capability to discriminate between narrow genetic variations. The polymorphism level between 120 microsatellite primer pairs and 148 soybean varieties was investigated through the fluorescence based automatic detection system. A set of 16 primer pairs showed highly reproducible polymorphism in these varieties. A total of 204 alleles were detected using the 16 microsatellite markers. The number of alleles per locus ranged from 6 to 28, with an average of 12.75 alleles per locus. The average polymorphism information content (PIC) was 0.86, ranging from 0.75 to 0.95. The unweighted pair group method using the arithmetic averages (UPGMA) cluster analysis for 148 varieties were divided into five distinctive groups, reflecting the varietal types and pedigree information. All the varieties were perfectly discriminated by marker genotypes. These markers may be useful to complement a morphological assessment of candidate varieties in the DUS (distinctness, uniformity and stability) test, intervening of seed disputes relating to variety authentication, and testing of genetic purity in soybean varieties.

Genetic Diversity Analysis of South and East Asian Duck Populations Using Highly Polymorphic Microsatellite Markers

  • Seo, Dongwon;Bhuiyan, Md. Shamsul Alam;Sultana, Hasina;Heo, Jung Min;Lee, Jun Heon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.4
    • /
    • pp.471-478
    • /
    • 2016
  • Native duck populations have lower productivity, and have not been developed as much as commercials duck breeds. However, native ducks have more importance in terms of genetic diversity and potentially valuable economic traits. For this reason, population discriminable genetic markers are needed for conservation and development of native ducks. In this study, 24 highly polymorphic microsatellite (MS) markers were investigated using commercial ducks and native East and South Asian ducks. The average polymorphic information content (PIC) value for all MS markers was 0.584, indicating high discrimination power. All populations were discriminated using 14 highly polymorphic MS markers by genetic distance and phylogenetic analysis. The results indicated that there were close genetic relationships among populations. In the structure analysis, East Asian ducks shared more haplotypes with commercial ducks than South Asian ducks, and they had more independent haplotypes than others did. These results will provide useful information for genetic diversity studies in ducks and for the development of duck traceability systems in the market.

DNA marker traceability in Korean Cattle

  • Kwon, Jae-Chul;Choi, Yu-Mi;Lee, Jea-Young
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.155-159
    • /
    • 2006
  • Samples of 33 Hanwoo individuals from Korean elite sire families were used and five microsatellite markers were selected finally, which were located on chromosomes different chromosomes with the end sequencing of 100 HW-YUBAC that were recorded in the NCBI by Yeungnam University. Ten major microsatellite markers were selected from alleles amplified, their frequencies, H(Heterozygosity) and PIC(Polymorphism information content) with Hardy-Weinberg equilibrium. Next, in order to evaluate the Power of the markers selected on the individual animal identification, the match probability(MP) and the relatedness coefficient(R) were computed.

  • PDF

Empirical Selection of Informative Microsatellite Markers within Co-ancestry Pig Populations Is Required for Improving the Individual Assignment Efficiency

  • Lia, Y.H.;Chu, H.P.;Jiang, Y.N.;Lin, C.Y.;Li, S.H.;Li, K.T.;Weng, G.J.;Cheng, C.C.;Lu, D.J.;Ju, Y.T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.5
    • /
    • pp.616-627
    • /
    • 2014
  • The Lanyu is a miniature pig breed indigenous to Lanyu Island, Taiwan. It is distantly related to Asian and European pig breeds. It has been inbred to generate two breeds and crossed with Landrace and Duroc to produce two hybrids for laboratory use. Selecting sets of informative genetic markers to track the genetic qualities of laboratory animals and stud stock is an important function of genetic databases. For more than two decades, Lanyu derived breeds of common ancestry and crossbreeds have been used to examine the effectiveness of genetic marker selection and optimal approaches for individual assignment. In this paper, these pigs and the following breeds: Berkshire, Duroc, Landrace and Yorkshire, Meishan and Taoyuan, TLRI Black Pig No. 1, and Kaohsiung Animal Propagation Station Black pig are studied to build a genetic reference database. Nineteen microsatellite markers (loci) provide information on genetic variation and differentiation among studied breeds. High differentiation index ($F_{ST}$) and Cavalli-Sforza chord distances give genetic differentiation among breeds, including Lanyu's inbred populations. Inbreeding values ($F_{IS}$) show that Lanyu and its derived inbred breeds have significant loss of heterozygosity. Individual assignment testing of 352 animals was done with different numbers of microsatellite markers in this study. The testing assigned 99% of the animals successfully into their correct reference populations based on 9 to 14 markers ranking D-scores, allelic number, expected heterozygosity ($H_E$) or $F_{ST}$, respectively. All miss-assigned individuals came from close lineage Lanyu breeds. To improve individual assignment among close lineage breeds, microsatellite markers selected from Lanyu populations with high polymorphic, heterozygosity, $F_{ST}$ and D-scores were used. Only 6 to 8 markers ranking $H_E$, $F_{ST}$ or allelic number were required to obtain 99% assignment accuracy. This result suggests empirical examination of assignment-error rates is required if discernible levels of co-ancestry exist. In the reference group, optimum assignment accuracy was achievable achieved through a combination of different markers by ranking the heterozygosity, $F_{ST}$ and allelic number of close lineage populations.

Development and Characterization, and Application of Ten Polymorphic Microsatellite Markers in the Crested Ibis Nipponia nippon from South Korea

  • Choi, Eun Hwa;Kim, Gyeongmin;Baek, Su Youn;Kim, Sung Jin;Hwang, Jihye;Jun, Jumin;Jang, Kuem Hee;Ryu, Shi Hyun;Hwang, Ui Wook
    • Animal Systematics, Evolution and Diversity
    • /
    • v.36 no.2
    • /
    • pp.154-158
    • /
    • 2020
  • The Asian crested ibis Nipponia nippon is one of the world's most endangered species. Except for the Sanxii population from China, it is known that all of the crested ibis populations from East Asia have been extinguished. In these days, most of them are being inbred as captive populations in China, South Korea, and Japan, which caused their low expected genetic diversity. Microsatellite markers are well known as a suitable DNA marker for exploring genetic diversity among captive populations of a variety of endangered species. In the present study, ten microsatellite markers were developed for the captive populations of the South Korean crested ibis, which were employed to examine the level of genetic diversity with the two founders from Sanxii, China and the 70 descendants of them. As a result, the mean number of gene diversity, observed heterozygosity, and expected heterozygosity of the captive population were 0.70, 0.84, and 0.70 respectively. It revealed that the captive population of South Korea is as genetically more stable than we expected. In addition, the principal coordinates analysis and genetic structure analyses showed that the captive population of N. nippon can be divided into the two different genetic groups. The developed microsatellite markers here could be helpful for crested ibis conservation in East Asian countries such as China and Japan as well as South Korea.

Molecular Characterization of Hallikar Breed of Cattle Using Microsatellite Markers

  • Kumar, S. Naveen;Jayashankar, M.R.;Nagaraja, C.S.;Govindaiah, M.G.;Saravanan, R.;Karthickeyan, S.M.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.5
    • /
    • pp.622-626
    • /
    • 2006
  • Molecular characterization of Hallikar, the native cattle breed of Karnataka, was undertaken using 19 cattle specific, highly polymorphic microsatellite markers recommended by FAO. The genomic DNA was subjected to PCR amplification and alleles were resolved through six per cent denaturing PAGE with a 10 bp DNA ladder followed by silver staining. Genotyping of animals was done based on allele size. The number of alleles ranged from three to nine with allele sizes ranging from 102 bp to 294 bp. These alleles were distributed in the frequency range between 0.0306 and 0.8673 in the population. The mean observed number of alleles was $6.368{\pm}1.4225$. The mean observed and expected heterozygosities were $0.7515{\pm}0.1734$ and $0.7850{\pm}0.1381$, respectively. The high heterozygosity observed implies presence of higher genetic variability within Hallikar breed. The PIC (Polymorphism Information Content) values ranged from 0.2322 (ETH152) to 0.8654 (ETH225). The percentage of polymorphic loci obtained was 100 as all the 19 microsatellite markers were found to be polymorphic. Except for ETH152, all the other loci had high PIC values, indicating that these markers are highly informative for characterization of Hallikar breed. The population was tested for Hardy-Weinberg equilibrium at 19 microsatellite loci, and at 74 per cent of the loci the population was found to be in disequilibrium.

Analysis of genetic diversity for cattle parentage testing using microsatellite markers (소의 친자감정을 위한 Microsatellite markers의 유전적 다양성 분석)

  • Cho, Gil-jae;Yang, Young-jin;Lee, Kil-wang
    • Korean Journal of Veterinary Research
    • /
    • v.44 no.2
    • /
    • pp.287-292
    • /
    • 2004
  • The objective of present study was to ascertain genetic diversity for cattle parentage testing. A total of 59 random cattle samples(29 Korean native cattle and 30 dairy cows) were genotyped by using 11 microsatellite loci(BM1824, BM2113, ETH10, ETH225, EH3, INRA23, SPS115, TGLA122, TGLA227, TGLA53, and TGLA126). This method consisted of multiplexing PCR procedure and showed reasonable amplification of all PCR products. Genotyping was performed with an ABI 310 genetic analyzer. The number of alleles per locus varied from 5 to 11 with a mean value of 6.73 in the Korean native cattle(KNC), 4 to 9 with a mean of 5.91 in dairy cows(DC). Expected heterozygosity was ranged 0.534~0.855(mean 0.732), 0.370~0.866(mean 0.692) in the KNC and DC, respectively. PIC value was ranged 0.485~0.821(mean 0.684), 0.336~0.834(mean 0.640) in the KNC and DC, respectively. Of the 11 markers, 7 markers(ETH10, EH3, INRA23, SPS115, TGLA122, TGLA227, TGLA53) and 3 markers(INRA23, TGLA227, TGLA53) have relatively high PIC value (>0.7) in the KNC and DC, respectively. The total exclusion probability of 11 microsatellite loci was 0.9997 and 0.9991 in the KNC and DC, respectively. These results present basic information for developing a system for parentage verification and individual identification in the KNC and DC.

Molecular Characterisation of the Mafriwal Dairy Cattle of Malaysia Using Microsatellite Markers

  • Selvi, P.K.;Panandam, J.M.;Yusoff , K.;Tan, S.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.10
    • /
    • pp.1366-1368
    • /
    • 2004
  • The Mafriwal dairy cattle was developed to meet the demands of the Malaysian dairy Industry. Although there are reports on its production and reproductive performance, there has been no work on its molecular characterization. This study was conducted to characterize the Mafriwal dairy cattle using microsatellite markers. Fifty two microsatellite loci were analysed for forty Mafriwal dairy cows kept at Institut Haiwan Kluang, Malaysia. The study showed two microsatellite loci to be monomorphic. Allele frequencies for the polymorphic loci ranged from 0.01 to 0.31. Genotype frequencies ranged from 0.03 to 0.33. The mean overall heterozygosity was 0.79. All polymorphic microsatellite loci deviated significantly (p<0.01) from Hardy-Weinberg equilibrium. The Mafriwal dairy cattle showed high genetic variability despite being a nucleus herd and artificial insemination being practiced.

Cluster Analysis of 12 Chinese Native Chicken Populations Using Microsatellite Markers

  • Chen, G.H.;Wu, X.S.;Wang, D.Q.;Qin, J.;Wu, S.L.;Zhou, Q.L.;Xie, F.;Cheng, R.;Xu, Q.;Liu, B.;Zhang, X.Y.;Olowofeso, O.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.8
    • /
    • pp.1047-1052
    • /
    • 2004
  • The genomes of Chinese native chicken populations were screened using microsatellites as molecular markers. A total of, 528 individuals comprisede12 Chinese native chicken populations were typed for 7 microsatellite markers covering 5 linkage groups and genetic variations and genetic distances were also determined. In the 7 microsatellite loci, the number of alleles ranged from 2 to 7 per locus and the mean number of alleles was 4.6 per locus. By using fuzzy cluster, 12 Chinese native chicken populations were divided into three clusters. The first cluster comprised Taihe Silkies, Henan Game Chicken, Langshan Chicken, Dagu Chicken, Xiaoshan Chicken, Beijing Fatty Chicken and Luyuan Chicken. The second cluster included Chahua Chicken, Tibetan Chicken, Xianju Chicken and Baier Chicken. Gushi Chicken formed a separate cluster and demonstrated a long distance when comparing with other chicken populations.