Browse > Article
http://dx.doi.org/10.5423/PPJ.OA.12.2018.0283

Association Analysis of Charcoal Rot Disease Resistance in Soybean  

Ghorbanipour, Ali (Department of Agronomy and Plant Breeding, Faculty of Agricultural Sciences, University of Guilan)
Rabiei, Babak (Department of Agronomy and Plant Breeding, Faculty of Agricultural Sciences, University of Guilan)
Rahmanpour, Siamak (Seed and Plant Improvement Institute (SPII), Agricultural Research, Education and Extension Organization (AREEO))
Khodaparast, Seyed Akbar (Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan)
Publication Information
The Plant Pathology Journal / v.35, no.3, 2019 , pp. 189-199 More about this Journal
Abstract
In this research, the relationships among the 31 microsatellite markers with charcoal rot disease resistance related indices in 130 different soybean cultivars and lines were evaluated using association analysis based on the general linear model (GLM) and the mixed linear model (MLM) by the Structure and Tassel software. The results of microsatellite markers showed that the genetic structure of the studied population has three subpopulations (K=3) which the results of bar plat also confirmed it. In association analysis based on GLM and MLM models, 31 and 35 loci showed significant relationships with the evaluated traits, respectively, and confirmed considerable variation of the studied traits. The identified markers related to some of the studied traits were the same which can probably be due to pleiotropic effects or tight linkage among the genomic regions controlling these traits. Some of these relationships were including, the relationship between Sat_252 marker with amount of charcoal rot disease, Satt359, Satt190 and Sat_169 markers with number of microsclerota in stem, amount of charcoal rot disease and severity of charcoal rot disease, Sat_416 marker with number of microsclerota in stem and amount of charcoal rot disease and the Satt460 marker with number of microsclerota in stem and severity of charcoal rot disease. The results of this research and the linked microsatellite markers with the charcoal rot disease-related characteristics can be used to identify the suitable parents and to improve the soybean population in future breeding programs.
Keywords
linkage disequilibrium; microsatellite markers; pleiotropic effect; population genetic structure;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wu, X. L., Zhou, B., Zhao, J. M., Guo, N., Zhang, B., Yang, F., Chen, S., Gai, J. and Xing, H. 2011. Identification of quantitative trait loci for partial resistance to Phytophthora sojae in soybean. Plant Breed. 130:144-149.   DOI
2 Yuan, J., Njiti, V. N., Meksem, K., Iqbal, M. J., Triwitayakorn, K., Kassem, M. A., Davis, G. T., Schmidt, M. E. and Lightfoot, D. A. 2002. Quantitative trait loci in two soybean recombinant inbred line populations segregating for yield and disease resistance. Crop Sci. 42:271-277.   DOI
3 Babu, B. K., Saxena, A. K., Srivastava, A. K. and Arora. D. K. 2007. Identification and detection of Macrophomina phaseolina by using specific species oligonucleotide primers and prob. Mycologia 99:797-803.   DOI
4 Bilyeu, K. D., Ratnaparkhe, M. B. and Kole, C. 2010. Genetics, genomics and breeding of soybean. 1st ed. CRC Press, Boca Raton, USA. 388 pp.
5 Bradbury, P. J., Zhang, Z., Kroon, D. E., Casstevens, T. M., Ramdoss, Y. and Buckler, E. S. 2007. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633-2635.   DOI
6 Breseghello, F. and Sorrells, M. E. 2006. Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172:1165-1177.   DOI
7 Musial, J. M., Mackie, J. M., Armour, D. J., Phan, H. T. T., Ellwood, S. E., Aitken, K. S. and Irwin, J. A. G. 2008. Identify of QTL for resistance and susceptibility to Stagonospora meliloti in autotetraploid lucern. Theor. Appl. Genet. 1148:1427-1435.
8 Porras-Hurtado, L., Ruiz, Y., Santos, C., Phillips, C., Carracedo, A. and Lareu, M. V. 2013. An overview of STRUCTURE: applications, parameter settings and supporting software. Front. Genet. 4:98.
9 Mengistu, A., Ray, J. D., Smith, J. R. and Paris, R. L. 2007. Charcoal rot disease assessment of soybean genotypes using a colony forming unit index. Crop Sci. 47:2453-2461.   DOI
10 Mengistu, A., Arelli, P. A., Bond, J. P., Shannon, G. J., Wrather, A. J., Rupe, J. B., Chen, P., Little, C. R., Canaday, C. H., Newman, M. A. and Pantalone, V. R. 2011. Evaluation of soybean genotypes for resistance to charcoal rot. Plant Health Prog. 12:44-59.
11 Neale, D. B. and Savolainen, O. 2004. Association genetic of complex traits in conifers. Trends Plant Sci. 9:325-330.   DOI
12 Olaya, G., Abawi, G. S. and Weeden, N. F. 1996. Inheritance of the resistance to macrophomina phaseolina and identification of RAPD markers linked to resistance genes in beans. Phytopathology 86:674-679.   DOI
13 Oraguzie, N. C., Rikkerink, E. H. A., Gardine, S. E. and de Silva, H. N. 2007. Association mapping in plants. Springer, NY, USA. 278 pp.
14 Pritchard, J. K., Stephens, M. and Donnelly, P. 2000. Inference of population structure using multilocus genotype data. Genetics 155:945-959.   DOI
15 Iqbal, M. J., Meksem, K., Njiti, V. N., Kassem, A. and Lightfoot, D. A. 2001. Microsatellite markers identify three additional quantitative trait loci for resistance to soybean sudden-death syndrome (SDS) in Essex ${\times}$ Forrest RILs. Theor. Appl. Genet. 102:187-192.   DOI
16 Remington, D. L., Thornsberry, J. M., Matsuoka, Y., Wilson, L. M., Whitt, S. R., Doebley, J., Kresovich, S., Goodman, M. M. and Buckler, E. S. 2001. Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc. Natl. Acad. Sci. U.S.A. 98:11479-11484.   DOI
17 Coser, S. M., Chowda Reddy, R. V., Zhang, J., Mueller, D. S., Mengistu, A., Wise, K. A., Allen, T. W., Singh, A. and Singh, A. K. 2017. Genetic architecture of charcoal rot (Macrophomina phaseolina) resistance in soybean revealed using a diverse panel. Front. Plant Sci. 8:1626.   DOI
18 Evanno, G., Regnaut, E. and Goudet, E. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14:2611-2620.   DOI
19 Fusari, C. M., Di Rienzo, J. A., Troglia, C., Nishinakamasu, V., Moreno, M. V., Maringolo, C., Quiroz, F., Alvarez, D., Escande, A., Hopp, E., Heinz, R., Lia, V. V. and Paniego, N. B. 2012. Association mapping in sunflower for Sclerotinia head rot resistance. BMC Plant Biol. 12:93.   DOI
20 Hernandez-Delgado, S., Reyes-Valdes, M. H., Rosales-Serna, R. and Mayek-Perez, N. 2009. Molecular markers associated with resistance to Macrophomina phaseolina (Tassi) Goid in common bean. J. Plant Pathol. 91:163-170.
21 Iquira, E., Humira, S. and Francois, B. 2015. Association mapping of QTLs for sclerotinia stem rot resistance in a collection of soybean plant introductions using a genotyping by sequencing (GBS) approach. BMC Plant Biol. 15:5.   DOI
22 Jana, T., Sharma, T. R., Prasad, R. D. and Arora, D. K. 2003. Molecular characterization of Macrophomina phaseolina and Fusarium species by a single primer RAPD technique. Microbiol. Res. 158:249-257.   DOI
23 Li, X. P., Han, Y. P., Teng, W. L., Zhang, S. Z., Yu, K. F., Poysa, V., Anderson, T., Ding, J. and Li, W. 2010. Pyramided QTL underlying tolerance to Phytophthora root rot in megaenvironments from soybean cultivars Conrad' and Hefeng 25. Theor. Appl. Genet. 121:651-658.   DOI
24 Sun, J., Guo, N., Lei, J., Li, L., Hu, G. and Xing, H. 2014. Association mapping for partial resistance to Phytophthora sojae in soybean (Glycine max (L.) Merr.). J. Genet. 93:355-363.   DOI
25 Saghai-Maroof, M. A., Soliman, K. M., Jorgensen, R. A. and Allard, R. W. 1984. Ribosomal DNA spacer length polymorphism in barley: Mendelian inheritance, chromosomal location and population dynamics. Proc. Natl. Acad. Sci. U.S.A. 81:8014-8018.   DOI
26 Singh, R. J. 2006. Genetic resources, chromosome engineering and crop improvement: Oilseed crops. 3rd ed. CRC Press, Boca Raton, FL, USA. 320 pp.
27 Spataro, G., Tiranti, B., Arcaleni, P., Bellucci, E., Attene, G., Papa, R., Spagnoletti Zeuli, P. and Negri, V. 2011. Genetic diversity and structure of a worldwide collection of Phaseolus coccineus L. Theor. Appl. Genet. 122:1281-1291.   DOI
28 Tesso, T. and Ejeta, G. 2011. Stalk strength and reaction to infection by Macrophomina phaseolina of brown midrib maize (Zea mays) and (Sorghum bicolor). Field Crops Res. 120:271-275.   DOI
29 Tuberosa, R., Gill, B. S. and Quarrie, S. A. 2002. Cereal genomics: Ushering in a brave new world. Plant Mol. Biol. 48:445-449.   DOI
30 Vikram, D. 2007. Diversity analysis in soybean [Glycine max (L.) Merrill] using morphological and simple sequence repeat (SSR) markers. Master's thesis. Tamil Nadu Agricultural University, Coimbatore, India.
31 Wang, J., McClean, P. E., Lee, R., Goos, R. J. and Helms, T. 2008. Association mapping of iron deficiency chlorosis loci in soybean [Glycine max (L.) Merr.] advanced breeding lines. Theor. Appl. Genet. 116:777-787.   DOI
32 Wang, L., Guan, R., Zhangxiong, L., Chang, R. and Qiu, L. 2006. Genetic diversity of Chinese cultivated soybean revealed by SSR markers. Crop Sci. 46:1032-1038.   DOI