• Title/Summary/Keyword: Microprobe

Search Result 125, Processing Time 0.061 seconds

Crystal Populations Within a Porphyritic Dike in Ulleung Island: Are All Clinopyroxenes in the Stage I Dodong Basalt Sectored? (울릉도 반정질 암맥의 결정군집: 화산단계 I 도동현무암의 모든 단사휘석은 섹터누대를 가지는가?)

  • Munkhbayar, Enkhjin;Park, Jongkyu;Jang, Yun-Deuk
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.4
    • /
    • pp.277-291
    • /
    • 2021
  • A mineral phase contained in a rock sample can be categorized into several crystal populations with distinct origins and crystal growth histories. A detailed textural and mineralogical investigation on a clinopyroxene megacryst-bearing porphyritic dike with glassy chilled margins (tachylyte) in the southeastern Ulleung Island was conducted to decipher its crystal populations. During this study, we have measured glass and mineral major element compositions using electron microprobe analyzer. Tachylyte has a homogeneous trachyandesitic composition without any significant alteration characteristics, suggesting that its composition may represent the original melt composition of the dike. Clinopyroxene and plagioclase larger than 0.5 mm are antecrysts equilibrated with a more primitive melt composition than trachyandesitic tachylyte. Meanwhile, clinopyroxene and plagioclase microlites (<0.5mm) are regarded as primocrysts crystallized in-situ. According to our results, all clinopyroxenes in the Stage I Dodong Basalt are sectored into basal and prismatic parts, whose compositional ranges systematically vary: [Mg+Si+Fe]basal ↔ [Al+Ti+Na]prism. Therefore, we suggest that the effect of the elemental partitioning caused by the clinopyroxene sector zonation in Stage I volcanism should be considered in the future works.

Stochastic investigation on three-dimensional diffusion of chloride ions in concrete

  • Ye Tian;Yifei Zhu;Guoyi Zhang;Zhonggou Chen;Huiping Feng;Nanguo Jin;Xianyu Jin;Hongxiao Wu;Yinzhe Shao;Yu Liu;Dongming Yan;Zheng Zhou;Shenshan Wang;Zhiqiang Zhang
    • Computers and Concrete
    • /
    • v.32 no.3
    • /
    • pp.247-261
    • /
    • 2023
  • Due to the non-uniform distribution of meso-structure, the diffusion of chloride ions in concrete show the characteristics of characteristics of randomness and fuzziness, which leads to the non-uniform distribution of chloride ions and the non-uniform corrosion of steel rebar in concrete. This phenomenon is supposed as the main reason causing the uncertainty of the bearing capacity deterioration of reinforced concrete structures. In order to analyze and predict the durability of reinforced concrete structures under chloride environment, the random features of chloride ions transport in concrete were studied in this research from in situ meso-structure of concrete. Based on X-ray CT technology, the spatial distribution of coarse aggregates and pores were recognized and extracted from a cylinder concrete specimen. In considering the influence of ITZ, the in situ mesostructure of concrete specimen was reconstructed to conduct a numerical simulation on the diffusion of chloride ions in concrete, which was verified through electronic microprobe technology. Then a stochastic study was performed to investigate the distribution of chloride ions concentration in space and time. The research indicates that the influence of coarse aggregate on chloride ions diffusion is the synthetic action of tortuosity and ITZ effect. The spatial distribution of coarse aggregates and pores is the main reason leading to the non-uniform distribution of chloride ions both in spatial and time scale. The chloride ions concentration under a certain time and the time under a certain concentration both satisfy the Lognormal distribution, which are accepted by Kolmogorov-Smirnov test and Chi-square test. This research provides an efficient method for obtain mass stochastic data from limited but representative samples, which lays a solid foundation for the investigation on the service properties of reinforced concrete structures.

Skarn Evolution and Fe-(Cu) Mineralization at the Pocheon Deposit, Korea (한국 포천 광상의 스카른 진화과정 및 철(-동)광화작용)

  • Go, Ji-Su;Choi, Seon-Gyu;Kim, Chang Seong;Kim, Jong Wook;Seo, Jieun
    • Economic and Environmental Geology
    • /
    • v.47 no.4
    • /
    • pp.335-349
    • /
    • 2014
  • The Pocheon skarn deposit, located at the northwestern part of the Precambrian Gyeonggi massif in South Korea, occurs at the contact between the Cretaceous Myeongseongsan granite and the Precambrian carbonate rocks, and is also controlled by N-S-trending shear zone. The skarn distribution and mineralogy reflects both structural and lithological controls. Three types of skarn formations based on mineral assemblages in the Pocheon skarn exist; a sodiccalcic skarn and a magnesian skarn mainly developed in the dolostone, and a calcic skarn developed in the limestone. Iron mineralization occurs in the sodic-calcic and magnesian skarn zone, locally superimposed by copper mineralization during retrograde skarn stage. The sodic-calcic skarn is composed of acmite, diopside, albite, garnet, magnetite, maghemite, anhydrite, apatite, and sphene. Retrograde alteration consists of tremolite, phlogopite, epidote, sericite, gypum, chlorite, quartz, calcite, and sulfides. Magnesian skarn mainly consists of diopside and forsterite. Pyroxene and olivine are mainly altered to tremolite, with minor phlogopite, talc, and serpentine. The calcic skarn during prograde stage mainly consists of garnet, pyroxene and wollastonite. Retrograde alteration consists of epidote, vesuvianite, amphibole, biotite, magnetite, chlorite, quartz, calcite, and sulfides. Microprobe analyses indicate that the majority of the Pocheon skarn minerals are enriched by Na-Mg composition and have high $Fe^{3+}/Fe^{2+}$, $Mg^{2+}/Fe^{2+}$, and $Al^{3+}/Fe^{2+}$ ratios. Clinopyroxene is acmitic and diopsidic composition, whereas garnet is relatively grossular-rich. Amphiboles are largely of tremolite, pargasite, and magnesian hastingsite composition. The prograde anhydrous skarn assemblages formed at about $400^{\circ}{\sim}500^{\circ}C$ in a highly oxidized environment ($fO_2=10^{-23}{\sim}10^{-26}$) under a condition of about 0.5 kbar pressure and $X(CO_2)=0.10$. With increasing fluid/rock interaction during retrograde skarn, epidote, amphibole, sulfides and calcite formed as temperature decreased to approximately $250^{\circ}{\sim}400^{\circ}C$ at $X(CO_2)=0.10$.

Geochemical Occurrence of Uranium and Radon-222 in Groundwater at Test Borehole Site in the Daejeon area (대전지역 시험용 시추공 지하수내 우라늄 및 라돈-222의 지화학적 산출특성)

  • Jeong, Chan Ho;Ryu, Kun Seok;Kim, Moon Su;Kim, Tae Sung;Han, Jin Suk;Jo, Byung Uk
    • The Journal of Engineering Geology
    • /
    • v.23 no.2
    • /
    • pp.171-186
    • /
    • 2013
  • A drilling project was undertaken to characterize the geochemical relationship and the occurrence of radioactive materials at a test site among public-use groundwaters previously known to have high occurrence of uranium and radon-222 in the Daejeon area. A borehole (121 m deep) was drilled and core rocks mainly consist of two-mica granite, and associated with pegmatite and dykes of intermediate composition. The groundwater samples collected at six different depths in the borehole by a double-packed system showed the pH values ranging from neutral to alkaline (7.10-9.3), and electrical conductivity ranging from 263 to 443 ${\mu}S/cm$. The chemical composition of the borehole groundwaters was of the $Ca-HCO_3(SO_4+Cl)$ type. The uranium and Rn-222 contents in the groundwater were 109-1,020 ppb and 9,190-32,800 pCi/L, respectively. These levels exceed the regulation guidelines of US EPA. The zone of the highest groundwater uranium content occurred at depths of 45 to 55m. The groundwater chemistry in this zone (alkaline, oxidated, and high in bicarbonate) is favorable for the dissolution of uranium into groundwater. The dominant uranium complex in groundwater is likely to be $(UO_2CO_3)^0$ or $(UO_2HCO_3)^+$. Radon-222 content in groundwater shows an increasing trend with depth. The uranium and thorium contents in the core were 0.372-47.42 ppm and 0.388-11.22 ppm, respectively. These levels are higher values than those previously been reported in Korea. Microscopic observations and electron microprobe analysis(EPMA) revealed that the minerals containing U and Th are monazite, apatite, epidote, and feldspar. U and Th in these minerals are likely to substitute for major elements in crystal lattice.

Occurrence of Natural Radioactive Materials in Borehole Groundwater and Rock Core in the Icheon Area (이천지역 시추공 지하수와 시추코어내 자연방사성물질 산출 특성)

  • Jeong, Chan-Ho;Kim, Dong-Wook;Kim, Moon-Su;Lee, Young-Joon;Kim, Tae-Seung;Han, Jin-Seok;Jo, Byung-Uk
    • The Journal of Engineering Geology
    • /
    • v.22 no.1
    • /
    • pp.95-111
    • /
    • 2012
  • This study investigated the relationship between the geochemical environment and the occurrence of natural radioactive materials (uranium and Rn-222) in borehole groundwater at an Icheon site. The drill core recovered from the study site consists mainly of biotite granite with basic dykes. The groundwater samples were collected at four different depths in the borehole using the double-packed system. The pH range of the groundwater was 6.5~8.6, and the chemical type was Ca-$HCO_3$. The ranges of uranium and Rn-222 concentrations in the groundwater were 8.81~1,101 ppb and 5,990~11,970 pCi/L, respectively, and concentrations varied greatly with depth and collection time. The ranges of uranium and thorium contents in drill core were 0.53~18.3 ppm and 6.66~17.5 ppm, respectively. Microscope observations and electron microprobe analyses revealed the presence of U and Th as substituted elements for major composition of monazite, ilmenite, and apatite within K-feldspar and biotite. Although the concentration of uranium and thorium in the drill core was not high, the groundwater contained a high level of natural radioactive materials. This finding indicates that physical factors, such as the degree of fracturing of an aquifer and the groundwater flow rate, have a greater influence on the dissolution of radioactive materials than does the geochemical condition of the groundwater and rock. The origin of Rn-222 can be determined indirectly, using an interrelationship diagram of noble gas isotopes ($^3He/^4He$ and $^4He/^{20}Ne$).

A Study of Coloration of Topaz(I): Mineralogical and Chemical Study on the Topaz Selected from Some Localities of the World (토파즈의 人工着色 處理를 위한 硏究(I) : 世界 主要 産地別 토파즈의 鑛物學的 및 化學的 特性)

  • Han, Yi-Kyeong;Park, Maeng-Eon;Jang, Yong-Nam
    • Journal of the Mineralogical Society of Korea
    • /
    • v.5 no.2
    • /
    • pp.109-121
    • /
    • 1992
  • For the purpose of mineralogical and chemical study on the topazes from various localities of world(Brzail, China, India, Nigeria and Sri Lanka), electron microprobe analysis(EPMA), neutron activation analysis(NAA), X-ray diffractometry, Raman spectroscopy, etch test, scanning electron microscopy, refractive index, specific gravity, fluid inclusion were performed. The chemical composition in topaz was discussed along with its physical and structural properties. Variations in the unit-cell dimension and physical properties of topaz were found to have a close relations in the unit-cell dimension and physical properties of topaz were found to have a close relationship with extent of substitution of $OH^-\;for\;F^-$. According to neutron activation analyses, the trace elements had no effects on the physical properties of topaz. Raman spectra showed that the peaks of topaz were different in intensity from one locality to another. Etching defects in topaz includes negative crystal defect o point-bottom pit(India, Nigeria) and net work defect of curl-bottom pit(Brazil, China). Fluid inclusions in topaz may be classiffied into liquid $CO_2$-bearing inclusion, gaseous inclusion, halite, sylvite-bearing inclusion and liquid inclusion. The results of this study can be useful to devising artificial coloring methods for topaz with different mineralogical compositions.

  • PDF

Structural and Compositional Characteristics of Skarn Zinc-Lead Deposits in the Yeonhwa-Ulchin Mining District, Southeastern Taebaegsan Region, Korea Part I: The Yeonhwa I Mine

  • Yun, Suckew
    • Economic and Environmental Geology
    • /
    • v.12 no.2
    • /
    • pp.51-73
    • /
    • 1979
  • The zinc-lead deposits at the Yeonhwa I mine were investigated in terms of ore-forming geologic setting, structural style of ore control, geometry of individual orebodies, zoning, paragenesis and chemical composition of skarn minerals, as well as metal grades and ratios of selected orebodies. The Yeonhwa I mine is characterized by a large swarm of chimney type massive orebodies with thin skarn envelopes, boldly developed through a thick sequence of Pungchon Limestone, the overlying Hwajeol Formation, and the underlying Myobong Slate of Cambrian age. Nearly 20 orebodies of similar shape, but of varying size are arranged in a V-shaped pattern with northwest and northeast trends, clearly indicating an outstanding ore control by a conjugate system of fractures with these trends. Important orebodies are the Wolam 1, 2, 3, and 5 orebodies in the west, and the Namsan 1, 2, 3. and 5 orebodies in the east, among others. The Wolam 1 orebody, which was observed from the -360 level through the -240, -120, and 0 levels to the surface outcrops (totaling a vertical height of about 500m), shows a vertical variation in skarn mineralogy, ranging from pyroxene-garnet zone on the lower levels. through pyroxene (without garnet) zone on the intermediate levels, and finally to rhodochrosite vein on the upper levels and surface. Microprobe analyses of pyroxene and garnet on a total of 14 mineral grains revealed that pyroxenes are manganoan salitic in most samples, with downward increase of Fe and Mn, whereas garnets are highly andraditic, containing fractions of subordinate grossular with downward decrease of Fe. This indicates a reverse relationship of Fe-contents between pyroxene and garnet with depth. Ore minerals are major sphalerite, subordinate galena, and minor chalcopyrite. Sulfide gangue minerals include major pyrrhotite, and minor pyrite and marcasite of later age. Two types of variational trends in metal grades and ratios with depth are present on the plots of assay data from the Wolam orebodies: one is a steady upward increase in Pb, Zn, and Pb:Zn ratios, with a terminal decline at the top of orebody: the other is an irregular or sinusoidal change. The former is characteristic of chimney-type orebodies, whereas the latter is of vein· shaped orebodies. The Pb grades show large variations among orebodies and from level to level, whereas the Zn grades are relatively constand or less variable.

  • PDF

Compositional Variation of Arsenopyrites in Arsenic and Polymetallic Ores from the Ulsan Mine, Republic of Korea, and their Application to a Geothermometer (울산광산산(蔚山鑛山産) 유비철석(硫砒鐵石)의 조성변화(組成變化) 및 지질온도계(地質溫度計)에 대(對)한 적용(適用))

  • Choi, Seon-Gyu;Chung, Jae-Ill;Imai, Naoya
    • Economic and Environmental Geology
    • /
    • v.19 no.3
    • /
    • pp.199-218
    • /
    • 1986
  • Arsenopyrite in arsenic and polymetallic ores from calcic Fe-W skarn deposit of the Ulsan mine, Republic of Korea, has been investigated by means of electron microprobe analysis and X-ray diffractometry. As a result, it is revealed that the Ulsan arsenopyrite may be classified into the following three species with different generation on the basis of its mode of occurrence, chronological order during polymetallic mineralization and chemical composition; arsenopyrites I, II and III. 1) Arsenopyrite I-(Ni, Co)-bearing species belonging to the oldest generation, which has crystallized together with (Ni, Co)-arsenides and -sulpharsenides in the early stage of polymetallic mineralization. In rare cases, it contains a negligible amount of antimony. It occurs usually as discrete grains with irregular outline, showing rarely subhedral form, and is diffused in skarn zone. The maximum contents of nickel and cobalt are 10.04 Ni and 2.45 Co (in weight percent). Occasionally, it shows compositional zoning with narrow rim of lower (Ni+Co) content. 2) Arsenopyrite II-arsenian species, in which (Ni+Co) content is almost negligible, may occur widely in arsenic ores, and its crystallization has followed that of arsenopyrite I. It usually shows subhedral to euhedral form and is closely associated with $l{\ddot{o}}llingite$, bismuth, bismuthinite, chalcopyrite, sphalerite, bismuthian tennantite, etc. It is worthy of note that arsenopyrite II occasionally contains particles consisting of both bismuth and bismuthinite. 3) Arsenopyrite III-(Ni, Co)-free, S-excess and As-deficient species is close to the stoichiometric composition, FeAsS. It occurs in late hydrothermal veins, which cut clearly the Fe-W ore pipe and the surrounding skarn zone. It shows euhedral to subhedral form, being extremely coarse-grained, and is closely associated with pyrite, "primary" monoclinic pyrrhotite, galena, sphalerite, etc. Among three species of the Ulsan arsenopyrite, arsenopyrite I does not serve as a geothermometer, because (Ni+Co) content always exceeds 1 weight percent. In spite of the absence of Fe-S minerals as sulphur-buffer assemblage, the presence of $Bi(l)-Bi_2S_3$ sulphur-buffer enables arsenopyrite II to apply successfully to the estimation of either temperature and sulphur fugacity, the results are, $T=460{\sim}470^{\circ}C$, and log $f(S_2)=-7.4{\sim}7.0$. With reference to arsenopyrite III, only arsenopyrite coexisting with pyrite and "primary" monoclinic pyrrhotite may serve to restrict the range of both temperature and sulphur fugacity, $T=320{\sim}440^{\circ}C$, log $f(S_2)=-9.0{\sim}7.0$. These temperature data are consistent with those obtained by fluid inclusion geothermometry on late grandite garnet somewhat earlier than arsenopyrite II. At the beginning of this paper, the geological environments of the ore formation at Ulsan are considered from regional and local geologic settings, and physicochemical conditions are suspected, in particular the formation pressure (lithostatic pressure) is assumed to be 0.5kb (50MPa). The present study on arsenopyrite geothermometry, however, does not bring about any contradictions against the above premises. Thus, the following genetical view on the Ulsan ore deposit previously advocated by two of the present authors (Choi and Imai) becomes more evident; the ore deposit was formed at shallow depth and relatively high-temperature with steep geothermal gradient-xenothermal conditions.

  • PDF

Boulangerite from the Janggun Mine, Republic of Korea; Contributions to the Knowledge of Ore-Forming Minerals in the Janggun Lead-Zinc-Silver Ores (2) (한국·장군광산산 보울란저라이트에 대하여; 장군 연·아연·은 구성광물의 지식에 대한 기여 (2))

  • Lee, Hyun Koo;Imai, Naoya
    • Economic and Environmental Geology
    • /
    • v.26 no.2
    • /
    • pp.129-134
    • /
    • 1993
  • At the Janggun mine, boulangerite usually occurs as needles or irregularly-shaped grains, up to $500{{\mu}m}$ in longer dimensions, closely associated with galena, minerals of a tetrahedrite-freibergite series and bournonite in the peripheries of South A and B orebodies and the zone of manganoan carbonates surrounding them. In some places, especially at the top of South B orebody, it occures as "feather ore" consisting of its fine needles or "hairs" in small drusy cavities together with fine-grained euhedral galena, pyrite, manganoan carbonates, quartz, etc. In reflected light, it is bluish grey in colour exhibiting moderate bireflectance and is strongly anisotropic without any internal reflections. Reflectance in air is $R_{max}=43.2$, $R_{min}=35.7$ percent at wavelength of 580 nm, and VHN: $146-173\;kg/mm^2$ at a 50 g-load. The chemical composition on the average from 23 complete spot analyses by electron microprobe is, Pb 56.1, Sb 25.1, S 18.5, Total 99.6 (all in weight percent); the corresponding chemical formula calculated on the basis of S=11 is; $Pb_{5.16}Sb_{3.93}S_{11.0}$ which fulfils approximately the ideal formula $Pb_5Sb_4S_{11}$. The strongest reflections on the X-ray diffraction pattern are; $3.73\;{\AA}\;(10)$, $3.22\;{\AA}\;(5)$, $3.03\;{\AA}\;(4)$ and $2.82\;{\AA}\;(5)$ and the pattern is in harmonic with space group $C^5_{2h}-P2_1/a$. From the textural evidence of the microscopic observations, the mineral is considered to have been formed at the latest stage of hydrothermal lead-zinc-silver mineralization.

  • PDF

Chemical and Optical Absorption Spectroscopic Study of Colored Tourmalines (유색 전기석의 화학적 및 광학흡수 분광학적 연구)

  • Kim, Hee-Jong;Kim, Soo-Jin
    • Journal of the Mineralogical Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.1-16
    • /
    • 1993
  • The chemical and optical absorption spectroscopic characters of pink and colorless tourmalines from San Diego mine in California, U.S.A., blue/green tourmalines from anonymous mine, Brazil, and brownis black tourmalines from Uncheon and Haksan mines in Korea have been studied using X-ray diffractometer, electron microprobe, optical absorption spectroscopy, and heat treatment. Least-squares refinements give unit cell diminsions : a = 15.96-16.01 ${\AA}$, c = 7.15-7.16 ${\AA}$ for the brownish black tourmalines, a = 15.82 - 15.87 ${\AA}$, c = 7.09 - 7.10 ${\AA}$ for pink tourmalines, and a = 15.88 - 15.94 ${\AA}$, c = 7.12 - 7.15 ${\AA}$ for blue green tourmalines. The colors of tourmalines are responsible for the transition elements. The pink color is attributed to the $Mn^{3+}$ ions, the blue-green to $Fe^{2+}$ and $Mn^{2+}$, bluish green to $Cu^{2+}$, and the brownish black to $Fe^{2+}$, $Fe^{2+}$ - $Fe^{3+}$, and $Fe^{2+}$ - $Ti^{4+}$. The $Mn^{3+}$ ions of pink color tourmalines are stabilized in the Y sites compressed along the O(1)H-O(3)H axis by Jahn-Teller distortion. Heating removes the pink or red component from tourmalines, producing the colorless stones from the pink and red ones. The bluish green samples change into the greenish blue ones and a certain yellowish green samples change into the light green ones by heat treatment. In the elbaite-schorl series, the concentration of Fe and Mn are variable depending on the color zones. The green zone is characterrized by the high content of Fe and Mn are variable depending on the color zones. The green zone is characterized by the high content of Fe, whereas the pink zone by the high content of Mn. Mn increases in deep yellow zone compared with yellow or colorless zones.

  • PDF