DOI QR코드

DOI QR Code

Crystal Populations Within a Porphyritic Dike in Ulleung Island: Are All Clinopyroxenes in the Stage I Dodong Basalt Sectored?

울릉도 반정질 암맥의 결정군집: 화산단계 I 도동현무암의 모든 단사휘석은 섹터누대를 가지는가?

  • Received : 2021.11.03
  • Accepted : 2021.12.27
  • Published : 2021.12.31

Abstract

A mineral phase contained in a rock sample can be categorized into several crystal populations with distinct origins and crystal growth histories. A detailed textural and mineralogical investigation on a clinopyroxene megacryst-bearing porphyritic dike with glassy chilled margins (tachylyte) in the southeastern Ulleung Island was conducted to decipher its crystal populations. During this study, we have measured glass and mineral major element compositions using electron microprobe analyzer. Tachylyte has a homogeneous trachyandesitic composition without any significant alteration characteristics, suggesting that its composition may represent the original melt composition of the dike. Clinopyroxene and plagioclase larger than 0.5 mm are antecrysts equilibrated with a more primitive melt composition than trachyandesitic tachylyte. Meanwhile, clinopyroxene and plagioclase microlites (<0.5mm) are regarded as primocrysts crystallized in-situ. According to our results, all clinopyroxenes in the Stage I Dodong Basalt are sectored into basal and prismatic parts, whose compositional ranges systematically vary: [Mg+Si+Fe]basal ↔ [Al+Ti+Na]prism. Therefore, we suggest that the effect of the elemental partitioning caused by the clinopyroxene sector zonation in Stage I volcanism should be considered in the future works.

하나의 광물상은 다양한 기원과 결정성장사를 기록하는 여러 개의 결정군집(crystal population)으로 분류될 수 있다. 울릉도 남동부에서 단사휘석 거정을 포함하면서, 유리질 급냉대(타킬라이트, tachylyte)를 가지는 반상 암맥이 발견되었다. 이 암석에 대한 암석기재학적 접근을 통해 이들이 포함하는 결정군집에 대한 연구가 수행되었다. 이번 연구는 전자 미세탐침 분석기를 사용해 이 암석을 구성하는 타킬라이트와 조암광물의 주성분원소 조성을 보고한다. 타킬라이트는 조면안산암질 조성을 가지며, 어떠한 변질의 흔적도 보이지 않는다. 이러한 특징은 타킬라이트의 조성이 이 암맥의 원래 멜트 조성을 반영할 수 있다는 점을 시사한다. 0.5mm 보다 큰 결정크기를 가지는 단사휘석과 사장석은 조면안산암질 멜트보다 초생적인 조성을 가졌던 멜트와 평형을 이루었던 재활결정(antecryst)으로 판단된다. 한편, 0.5 mm 보다 작은 결정크기를 가지는 단사휘석 및 사장석 미정(microlite)은 현재 위치에서 결정화된 초생결정(primocryst)이다. 이번 연구 결과에 따르면, 울릉도 화산단계 I 도동현무암에 대해 기존에 보고된 단사휘석의 조성변화 양상은 [Mg+Si+Fe]basal ↔ [Al+Ti+Na]prism를 통해 체계적으로 설명될 수 있으며, 이는 도동현무암에 포함된 모든 단사휘석이 섹터누대를 가질 수 있다는 점을 시사한다. 따라서, 단사휘석의 섹터누대에서 기인한 원소 분배가 도동현무암의 지구화학적 진화에 미친 영향이 추후 연구에 반영되어야 할 것으로 판단된다.

Keywords

Acknowledgement

This research was supported by Kyungpook National University Development Project Research Fund, 2018. Thoughtful reviews from Prof. Jung-Woo Park of the Seoul National University and an anonymous reviewer led to significant improvements in this work.

References

  1. Brenna, M., Price, R., Cronin, S.J., Smith, I.E.M., Sohn, Y.K., Kim, G.B. and Maas, R., 2014, Final magma storage depth modulation of explosivity and trachyte-phonolite genesis at an intraplate volcano: A case study from Ulleung Island, South Korea. Journal of Petrology, 55, 709-747. https://doi.org/10.1093/petrology/egu004
  2. Cashman, K.V., Sparks, R.S.J. and Blundy, J.D., 2017, Vertically extensive and unstable magmatic systems: a unified view of igneous processes. Science, 355(6331).
  3. Chen, S.S., Lee, S.-G., Lee, T.J., Lee, Y.-S. and Liu, J.-Q., 2018, Multi-stage magmatic plumbing system of the volcano: A case study from Ulleung Island, South Korea. Lithos, 314, 201-215. https://doi.org/10.1016/j.lithos.2018.05.028
  4. Chistyakova, S. and Latypov, R., 2010, On the development of internal chemical zonation in small mafic dykes. Geological Magazine, 147, 1-12. https://doi.org/10.1017/s0016756809990343
  5. Choi, S.H., 2021, Geochemistry and petrogenesis of Quaternary volcanic rocks from Ulleung Island, South Korea. Lithos, 380, 105874. https://doi.org/10.1016/j.lithos.2020.105874
  6. Choi, S.H., Jwa, Y.-J. and Lee, H.Y., 2001, Geothermal gradient of the upper mantle beneath Jeju Island, Korea: Evidence from mantle xenoliths. Island Arc, 10, 175-193. https://doi.org/10.1046/j.1440-1738.2001.00317.x
  7. Choi, S.H. and Kwon, S.-T., 2005, Mineral chemistry of spinel peridotite xenoliths from Baengnyeong Island, South Korea, and its implications for the paleogeotherm of the uppermost mantle. Island Arc, 14, 236-253. https://doi.org/10.1111/j.1440-1738.2005.00469.x
  8. Choi, S.H., Mukasa, S.B., Kwon, S.-T. and Andronikov, A.V., 2006, Sr, Nd, Pb and Hf isotopic compositions of late Cenozoic alkali basalts in South Korea: Evidence for mixing between the two dominant asthenospheric mantle domains beneath East Asia. Chemical Geology, 232, 134-151. https://doi.org/10.1016/j.chemgeo.2006.02.014
  9. Downes, M.J., 1974, Sector and oscillatory zoning in calcic augites from M. Etna, Sicily. Contributions to Mineralogy and Petrology, 47, 187-196. https://doi.org/10.1007/BF00371538
  10. Friedman, I. and Long, W., 1984, Volcanic glasses, their origins and alteration processes. Journal of Non-Crystalline Solids, 67, 127-133. https://doi.org/10.1016/0022-3093(84)90144-3
  11. Ganne, J., Bachmann, O. and Feng, X., 2018, Deep into magma plumbing systems: Interrogating the crystal cargo of volcanic deposits. Geology, 46, 415-418. https://doi.org/10.1130/g39857.1
  12. Giacomoni, P.P., Coltorti, M., Bryce, J.G., Fahnestock, M.F. and Guitreau, M., 2016, Mt. Etna plumbing system revealed by combined textural, compositional, and thermobarometric studies in clinopyroxenes. Contributions to Mineralogy and Petrology, 171, 34. https://doi.org/10.1007/s00410-016-1247-7
  13. Ginibre, C., Worner, G. and Kronz, A., 2007, Crystal zoning as an archive for magma evolution. Elements, 3, 261-266. https://doi.org/10.2113/gselements.3.4.261
  14. Humphreys, M.C.S., 2009, Chemical evolution of intercumulus liquid, as recorded in plagioclase overgrowth rims from the Skaergaard intrusion. Journal of Petrology, 50, 127-145. https://doi.org/10.1093/petrology/egn076
  15. Hwang, S., Hwang, J. and Kwon, C., 2012, Geological report of the Ulleung Sheet (1:50,000). Korea Institute of Geoscience and Mineral Resources, 84p.
  16. Hwang, S.K. and Jo, I.H., 2014, Petrologic evolution processes of the latest volcanic rocks in Ulleung Island, East Sea. Journal of the Geological Society of Korea, 50, 343-363.
  17. Hwang, S.K., Kim, J.H. and Jang, Y.-D., 2017, Volcanism and petrogenesis of Dodong basaltic rocks in the Ulleung Island, East Sea. The Journal of the Petrological Society of Korea, 26, 361-371. https://doi.org/10.7854/JPSK.2017.26.4.361
  18. Hwang, S.K., Lee, S.J. and Ahn, U.S., 2019, Magmatic evolutions based on compositional variations with time in the Maljandeung Tuff, Ulleung Island, Korea. The Journal of the Petrological Society of Korea, 28, 111-128. https://doi.org/10.7854/JPSK.2019.28.2.111
  19. Irvine, T.N.J. and Baragar, W.R.A., 1971, A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8, 523-548. https://doi.org/10.1139/e71-055
  20. Jerram, D.A. and Martin, V.M., 2008, Understanding crystal populations and their significance through the magma plumbing system. Geological Society, London, Special Publications, 304, 133-148. https://doi.org/10.1144/SP304.7
  21. Kim, K.-B. and Lee, G.-D., 2008, A study on volcanic stratigraphy and fault of Ulleung-do, Korea. The Journal of Engineering Geology, 18, 321-330.
  22. Kim, K.H., Tanaka, T., Nagao, K. and Jang, S.K., 1999, Nd and Sr isotopes and K-Ar ages of the Ulreungdo alkali volcanic rocks in the East Sea, South Korea. Geochemical Journal, 33, 317-341. https://doi.org/10.2343/geochemj.33.317
  23. Kim, Y.K., 1985, Petrology of Ulreung volcanic island, Korea-Part 2. Petrography and bulk chemical composition. The Journal of the Japanese Association of Mineralogists, Petrologists and Economic Geologists, 80, 292-303. https://doi.org/10.2465/ganko1941.80.292
  24. Le Maitre, R.W., Streckeisen, A., Zanettin, B., Le Bas, M.J., Bonin, B., Bateman, P., Bellieni, G., Dudek, A., Efremova, S., Keller, J., Lameyre, J., Sabine, P.A., Schmid, R., Sorensen, H. and Woolley, A.R., 2002, Igneous rocks: A Classification and Glossary of Terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Cambridge University Press, Cambridge, 236p.
  25. Lee, W., Lee, H., Kim, D., Kim, J., Oh, J., Song, J.-H., Kim, C.H., Park, C.H. and Stuart, F.M., 2021, Trace element and helium isotope geochemistry of the Cenozoic intraplate volcanism in the East Sea (Sea of Japan): Implications for lithosphere-asthenosphere interaction. Lithos, 388-389, 106075. https://doi.org/10.1016/j.lithos.2021.106075
  26. Lim, K., 2016, Geochemistry and petrogenesis of the basaltic lavas in Dodong and Jeodong, Ulleung Island, Korea. MSc. thesis, Kyungpook National University, 36p.
  27. Mollo, S., Lanzafame, G., Masotta, M., Iezzi, G., Ferlito, C. and Scarlato, P., 2011, Cooling history of a dike as revealed by mineral chemistry: A case study from Mt. Etna volcano. Chemical Geology, 288, 39-52. https://doi.org/10.1016/j.chemgeo.2011.06.016
  28. Morimoto, N., 1988, Nomenclature of pyroxenes. Mineralogy and Petrology, 39, 55-76. https://doi.org/10.1007/BF01226262
  29. Park, J. and Jang, Y.-D., 2019, Compilation and evaluation of whole-rock geochemistry from Ulleung and Dok island. Proceedings of the Annual Joint Conference, The Geological Society of Korea, 265.
  30. Park, J., Lim, H., Myeong, B. and Jang, Y.-D., 2020, Syenite from Ulleung Island: As a window for pre-eruptive shallow alkaline magma dynamics. Lithos, 356-357, 105342. https://doi.org/10.1016/j.lithos.2019.105342
  31. Putirka, K.D., 2008, Thermometers and barometers for volcanic systems. Reviews in Mineralogy and Geochemistry, 69, 61-120. https://doi.org/10.2138/rmg.2008.69.3
  32. Shaw, C.S.J. and Eyzaguirre, J., 2000, Origin of megacrysts in the mafic alkaline lavas of the West Eifel volcanic field, Germany. Lithos, 50, 75-95. https://doi.org/10.1016/S0024-4937(99)00048-1
  33. Shin, H.-J., Kil, Y.-W., Jin, M,-S. and Lee, S.-H., 2006, Petrological study on upper mantle xenoliths from Asan and Pyeongtaek area. Journal of the Geological Society of Korea, 42, 95-113.
  34. Song, Y.S., Park, K.H. and Park, M.E., 1999, Major, rare-earth and trace geochemistry of Ulleungdo volcanic rocks. Journal of the Petrological Society of Korea, 8, 57-70.
  35. Signorelli, S., Vaggelli, G. and Romano, C., 1999, Pre-eruptive volatile (H2O, F, Cl and S) contents of phonolitic magmas feeding the 3550-year old Avellino eruption from Vesuvius, southern Italy. Journal of Volcanology and Geothermal Research, 93, 237-256. https://doi.org/10.1016/S0377-0273(99)00117-1
  36. Ubide, T., Mollo, S., Zhao, J.-X., Nazzari, M. and Scarlato, P., 2019, Sector-zoned clinopyroxene as a recorder of magma history, eruption triggers, and ascent rates. Geochimica et Cosmochimica Acta 251, 265-283. https://doi.org/10.1016/j.gca.2019.02.021
  37. Ulrych, J., Krmicek, L., Teschner, C., Randa, Z., Skala, R., Jonasova, S., Fediuk, F., Adamovic, J. and Pokorny, R., 2017, Tachylyte in Cenozoic basaltic lavas from the Czech Republic and Iceland: contrasting compositional trends. Mineralogy and Petrology, 111, 761-775. https://doi.org/10.1007/s00710-016-0483-x
  38. Viccaro, M., Giacomoni, P.P., Ferlito, C. and Cristofolini, R., 2010, Dynamics of magma supply at Mt. Etna volcano (Southern Italy) as revealed by textural and compositional features of plagioclase phenocrysts. Lithos, 116, 77-91. https://doi.org/10.1016/j.lithos.2009.12.012
  39. Welsch, B., Hammer, J., Baronnet, A., Jacob, S., Hellebrand, E. and Sinton, J., 2016, Clinopyroxene in postshield Haleakala ankaramite: 2. Texture, compositional zoning and supersaturation in the magma. Contributions to Mineralogy and Petrology, 171:6. https://doi.org/10.1007/s00410-015-1213-9
  40. Whitney, D.L. and Evans, B.W., 2010, Abbreviations for names of rock-forming minerals. American Mineralogist, 95, 185-187. https://doi.org/10.2138/am.2010.3371