• 제목/요약/키워드: Microporous membrane

Search Result 95, Processing Time 0.024 seconds

Enhanced Sensitivity of PEDOT Microtubule Electrode to Hydrogen Peroxide by Treatment with Gold (금 처리를 통한 PEDOT 마이크로튜브 전극의 과산화수소 검출 특성 향상)

  • Park, Jongseo;Son, Yongkeun
    • Polymer(Korea)
    • /
    • v.38 no.6
    • /
    • pp.809-814
    • /
    • 2014
  • An array structure of conducting polymer microtubule was fabricated for an amperometric biosensor. 3,4-Ethylenedioxythiophene (EDOT) was electropolymerized in the microporous template membrane with poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonic acid) (PEDOT/PSS) composite as a binder. The array structure can provide enhanced current collecting capability due to large active surface area compared to the macroscopic area of the electrode itself. For a biosensor application, the array electrode was tested for $H_2O_2$ detection and showed very sluggish electrochemical response to $H_2O_2$. To enhance the detection efficiency to the oxidation of $H_2O_2$, gold was treated on the electrode by two different approaches: sputtering and electrochemical deposition. Gold treatment with either method greatly enhanced the sensitivity of the electrode to $H_2O_2$. So, conducting polymer microtubule array with gold treatment was expected to be a sensitive amperometric biosensor system based on the detection of $H_2O_2$.

Sustainability Indices (=Green Star) for Microbial Fuel Cell (미생물 연료전지 영속발전 지표개발)

  • Song, Ha-Geun;KOO, Ja-Kong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.23 no.2
    • /
    • pp.47-52
    • /
    • 2015
  • A microbial fuel cell (MFC) is a device that can be obtained electricity from a variety of organic through the catalytic reaction of the microorganism. The MFC can be applied to various fields, and research is required to promote the performance of the microbial fuel cell for commercialization. The lower performance of an MFC is due to oxygen reduction at the cathode and the longer time of microbial degradation at anode. The MFC amount of power is sufficient but, in consideration of many factors, as a renewable energy, now commonly power density as compared to Nafion117 it is an ion exchange membrane used is PP (Poly Propylene) from 80 to about 11 fold higher, while reducing the cost to process wastewater is changed to a microporous non-woven fabric of a low cost, it may be energy-friendly environment to generate electricity. All waste, in that it can act as a bait for microorganisms, sustainability of the microbial fuel cell is limitless. The latest research on the optimization and performance of the operating parameters are surveyed and through the SSaM-GG(Smart, Shared, and Mutual- Green Growth) or GG-SSaM(Green Growth - Smart, Shared, and Mutual) as the concept of sustainable development in MFC, the middle indices are developed in this study.

DEVELOPMENT OF MICROPOROUS CALCIUM PHOSPHATE COATED NERVE CONDUIT FOR PERIPHERAL NERVE REPAIR (말초신경 재건을 위한 인회석 박막 코팅 미세공성 신경재생관(nerve conduit)의 개발)

  • Lee, Jong-Ho;Hwang, Soon-Jeong;Choi, Won-Jae;Kim, Soung-Min;Kim, Nam-Yeol;Lee, Eun-Jin;Ahn, Kang-Min;Myung, Hoon;Seo, Byoung-Moo;Choi, Jin-Young;Choung, Pill-Hoon;Kim, Myung-Jin;Kim, Hyun-Man
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.29 no.3
    • /
    • pp.151-156
    • /
    • 2003
  • This study was performed to develop a useful nerve conduit which provides favorable environment for Schwann cell viability and proliferation. Milipore membrane of $0.45{\mu}m$ pore size was selected because it permits nutritional inflow from the outside of the conduit and prevents from invading the fibrotic tissue into the conduit. The membrane was rolled and sealed to form a conduit of 2mm diameter and 20mm length. To improve the axonal regeneration and to render better environment for endogenous and exogenous Schwann cell behaviour, the microgeometry and surface of conduit was modified by coating with thin film of calcium phosphate. Cellular viability within the conduit and attachment to its wall were assessed with MTT assay and SEM study. Milipore filter conduit showed significantly higher rate of Schwann cell attachment and viability than the culture dish. However, the reverse was true in case of fibroblast. Coating with thin film of low crystalline calcium phosphate made more favorable environment for both cells with minimal change of pore size. These findings means the porous calcium phosphate coated milipore nerve conduit can provide much favorable environment for endogenous Schwann cell proliferation and exogenous ones, which are filled within the conduit for the more advanced strategy of peripheral nerve regeneration, with potential of reducing fibrotic tissue production.

A Study on the Liquid-Liquid Extraction by Use of Hydrophobic Hollow Fiber Module (소수성 중공사 모듈에 의한 액-액 추출에 관한 연구)

  • Kim, Young-II;Park, Dong-Won
    • Applied Chemistry for Engineering
    • /
    • v.7 no.2
    • /
    • pp.237-244
    • /
    • 1996
  • Liquid-liquid extractions by use of microporous hollow fiber modules are fast compared with conventional extraction equipment because of the large surface area per volume. In these modules, the extractant and feed can be contacted at high speed and two flows are completely independent, so there are no problems with loading and channeling. In this paper, it was investigated the extraction selectivities for liquid-liquid extraction of Fe(II) and Ni(II) from dilute aqueous solution into TOA (tri-n-octylamine) and EHPNA (bis(2-ethylhexyle)hydrogenphosphite) as organic extractants by using the hydrophobic hollow fiber module. To determine the rate controlling step for mass transfer in hollow fibers, we also examined the effect of inside and outside flow rates of the hollow fiber module. From these experiments, we identified for the extraction of system with high partition coefficient in hydrophobic hollow fibers, mass transfer in the inside aqueous feed dominated the overall mass transfer, and in this paper, correlation between $K_w$ and $v_t$ was obtained as $K_w{\frac{d}{D}}=6.22\(\frac{d^2v_t}{LD}\)^{1/3}$ On the other hand, for the system with low partition coefficient, the resistance in the inside of hollow fibers was much less than membrane resistance because the extraction was not simple in the micropore. Thus, for systems with high partition coefficients, hydrophobic hollow fibers would be a better choice.

  • PDF

Application of Micro Porous Layer (MPL) for Enhance of Electrode Performance in Phosphoric Acid Fuel Cells (PAFCs) (인산형 연료전지(PAFC)의 전극 성능 향상을 위한 미세다공층(MPL)의 적용)

  • Jihun Ha;Sungmin Kang;You-Kwan Oh;Dong-Hyun Peck
    • Journal of the Korean Electrochemical Society
    • /
    • v.27 no.1
    • /
    • pp.32-39
    • /
    • 2024
  • The key components of a Phosphoric acid fuel cell (PAFC) are an electrode catalyst, an electrolyte matrix and a gas diffusion layer (GDL). In this study, we introduced a microporous layer on the GDL of PAFC to enhance liquid electrolyte management and overall electrochemical performance of PAFC. MPL is primarily used in polymer electrolyte membrane fuel cells to serve as an intermediate buffer layer, effectively managing water within the electrode and reducing contact resistance. In this study, electrodes were fabricated using GDLs with and without MPL to examine the influence of MPL on the performance of PAFC. Internal resistance and polarization curves of the unit cell were measured and compared to each other to assess the impact of MPL on PAFC electrode performance. As the results, the application of MPL improved power density from 170.2 to 192.1 mW/cm2. MPL effectively managed electrolyte and water within the matrix and electrode, enhancing stability. Furthermore, the application of MPL reduced internal resistance in the electrode, resulting in sustained and stable performance even during long-term operation.