• Title/Summary/Keyword: Microporous carbon

Search Result 55, Processing Time 0.025 seconds

Serum Leakage Control using PP/PDMS Composite Membrane (PP/PDMS 복합막을 이용한 혈청누출 제어)

  • 김기범;이삼철;정순량;정경락
    • Membrane Journal
    • /
    • v.10 no.1
    • /
    • pp.47-53
    • /
    • 2000
  • The artificial lung is a device used to replace the function of the lungs. The major function of the lung is to remove carbon dioxide from the venous blood and replace it with oxygen, or arterialize the blood. And the function of the artificial lung is to provide an adequate amount of oxygenated blood to all the tissues of body during the open heart surgery. Extracorporeal life support(ECLS or ECMO) is standard treatment for severe respiratory failure but poses many contributions to future lung transplantation. Artificial Lung or membrane oxygenators available today, based on microporous polypropylene fibers, are associated with two major problems. They require systemic anticoagulation of the patient and they allow serum leakage across the membrane from the blood side to the gas side during long-term use. We obtained newly fabricated polypropylene(PP)/polydimethylsiloxane(PDMS) membranes which combined PP membrane, a microporous support layer with PDMS, and we had investiaged a technique for minimizing serum lekage of polypropylene(PP) membrane. The gas permeability of each PP/PDMS membrane was almost constant before and after the whole blood test by Lee-White method, while that of PP membrane was significantly reduced. Therefore the PP/PDMS membrane could be prevented serum leakage of PP membrane. In addition, the gas permeability of $CO_2$ in PP/PDMS membrane was 11.5 times higher as compared with that of $O_2$.

  • PDF

Comparison of Catalytic Activity for Methanol Electrooxidation Between Pt/PPy/CNT and Pt/C

  • Lee, C.G.;Baek, J.S.;Seo, D.J.;Park, J.H.;Chun, K.Y.
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.4
    • /
    • pp.240-245
    • /
    • 2010
  • This work explored the catalytic effect of Pt in multi-wall carbon nanotube and poly-pyrrole conductive polymer electrocatalysts (Pt/PPy/MWCNT). A home-made Pt/PPy/MWCNT catalyst was first evaluated by comparing its electrochemical active surface area (ESA) with E-Tek commercial catalysts by cyclic voltammetry in $H_2SO_4$ solution. Then, the methanol oxidation currents of Pt/PPy/MWCNT and the hydrogen peaks in $H_2SO_4$ solution were serially measured with microporous electrode. This provided the current density of methanol oxidation based on the ESA, allowing a quantitative comparison of catalytic activity. The current densities were also measured for Pt/C catalysts of E-Tek and Tanaka Precious Metal Co. The current densities for the different catalysts were similar, implying that catalytic activity depended directly on the ESA rather than charge transfer or electronic conductivity.

Preparation and characterization of microporous NaOH-activated carbons from hydrofluoric acid leached rice husk and its application for lead(II) adsorption

  • Hassan, A.F.;Youssef, A.M.
    • Carbon letters
    • /
    • v.15 no.1
    • /
    • pp.57-66
    • /
    • 2014
  • Three activated carbons (ACs) were prepared using NaOH (N) as an activating agent. Hydrofluoric acid pre-leached rice husk was used as a precursor. After leaching, the precursor was washed with distilled water, dried, crushed, and then sieved; a size fraction of 0.3-0.5 mm was selected for carbonization in the absence of air at $600^{\circ}C$. The carbonization product (LC) was mixed with NaOH at ratios of 1:2, 1:3, and 1:4 (wt of LC: wt of NaOH) and the produced ACs after activation at $800^{\circ}C$ were designated NLC21, NLC31, and NLC41, respectively. Surface and textural properties were determined using nitrogen adsorption at $-196^{\circ}C$, scanning electron microscopy images, thermogravimetric analysis, and Fourier transform infrared spectra. These ACs were used as adsorbents for lead(II) from aqueous solutions. The effects of the textural properties and the chemistry of the carbon surfaces were investigated and the impact of the operation conditions on the capacity for lead(II) sorption was also considered. Modification of NLC41 with $H_2O_2$ and $HNO_3$ gave two other adsorbents, $H_{NLC41}$ and $N_{NLC41}$ respectively. These two new samples exhibited the highest removal capacities for lead(II), i.e.117.5 and 128.2 mg/g, respectively. The adsorption data fitted the Langmuir isotherm and the kinetic adsorption followed pseudo-second order kinetics. The thermodynamic parameters have been determined and they indicated a spontaneous endothermic process.

Hierarchical 5A Zeolite-Containing Carbon Molecular Sieve Membranes for O2/N2 Separation (산소/질소 분리를 위한 다층구조 제올라이트 5A를 함유한 탄소분자체 분리막 제조)

  • Li, Wen;Chuah, Chong Yang;Bae, Tae-Hyun
    • Membrane Journal
    • /
    • v.30 no.4
    • /
    • pp.260-268
    • /
    • 2020
  • Mixed-matrix carbon molecular sieve membranes containing conventional and hierarchically structured 5A were synthesized for application in oxygen (O2)/nitrogen (N2) separation. In general, incorporating 5A fillers into porous carbon matrices dramatically increased the permeability of the membrane with a marginal decrease in selectivity, resulting in very attractive O2/N2 separation performances. Hierarchical zeolite 5A, which contains both microporous and mesoporous domains, improved the separation performance further, indicating that the mesopores in the zeolite can serve as an additional path for rapid gas diffusion without sacrificing O2/N2 selectivity substantially. This facile strategy successfully and cost-effectively pushed the performance close to the Robeson upper bound. It produced high performance membranes based on Matrimid® 5218 polyimide and zeolite 5A, which are inexpensive commercial products.

Adsorptive Removal of Cu(II), Pb(II), and Hg(II) Ions from Common Surface Water Using Cellulose Fiber-Based Filter Media

  • Phani Brahma Somayajulu Rallapalli;Jeong Hyub Ha
    • Applied Chemistry for Engineering
    • /
    • v.35 no.4
    • /
    • pp.352-359
    • /
    • 2024
  • Environmental pollution from heavy metal ions (HMIs) is a global concern. Recently, biosorption methods using cellulose sorbents have gained popularity. The objective of this study was to assess the removal efficiency of Cu(II), Pb(II), and Hg(II) ions at low concentration levels (100-700 ppb) from aqueous solutions using three different cellulose fiber-based filter media. Sample A was pure cellulose fiber, Sample B was 10% activated carbon-cellulose fiber, and Sample C was cellulose fiber-glass fiber-30% activated carbon-20% amorphous titanium silicate (ATS). The samples were characterized by several physicochemical techniques. The porosity measurements using N2 sorption isotherms revealed that Samples A and B are nonporous or macroporous materials, whereas the addition of 50% filler materials into the cellulose resulted in a microporous material. The Brunauer-Emmett-Teller (BET) surface area and pore volume of Sample C were found to be 320.34 m2/g and 0.162 cm3/g, respectively. The single ion batch adsorption experiments reveal that at 700 ppb initial metal ion concentration, Sample A had removal efficiencies of 7.5, 11.5, and 13.7% for Cu(II), Pb(II), and Hg(II) ions, respectively. Sample B effectively eliminated 99.6% of Cu(II) ions compared to Pb(II) (14.2%) and Hg(II) (31.9%) ions. Cu(II) (99.37%) and Pb(II) (96.3%) ions are more efficiently removed by Sample C than Hg(II) (68.2%) ions. The X-ray photoelectron spectroscopy (XPS) wild survey spectrum revealed the presence of Cu(II), Pb(II), and Hg(II) ions in HMI-adsorbed filter media. The high-resolution C1s spectra of Samples A and B reveal the presence of -C-OH and -COOH groups on their surface, which are essential for HMIs adsorption via complexation reactions. Additionally, the ATS in Sample C facilitates the adsorption of Pb(II) and Hg(II) ions through ion exchange.

Synthesis of Carbon Molecular Sieve from Palm Shell Using Deposition of Polyfurfuryl Alcohol (Polyfurfuryl 알코올 증착에 의한 야자껍질로부터 탄소분자 체의 합성)

  • Sivakumar, V.M.;Lam, Kok-Keong;Mohamed, Abdul Rahman
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.3
    • /
    • pp.323-328
    • /
    • 2010
  • In this work, an intention to synthesize the carbon molecular sieve (CMS) with ideal sieving properties from palm shell has been attempted. The process includes three main stages: carbonization, carbon dioxide activation and polymer deposition using polyfurfuryl alcohols. Palm shell based activated carbon (AC) produced by carbon dioxide activation was used as raw material in synthesis of CMS. After preparing palm shell based AC, optimum concentration ratio of furfuryl alcohols and formaldehyde to AC for CMS synthesis was obtained in this study. Deposition of polyfurfuryl alcohols on the palm shell based AC was then carried out prior to carbonization. These polymer deposited AC was subjected to carbonization at $700-900^{\circ}C$ under inert condition. All the microporous materials were analyzed using micromeritics ASAP/2020. The results show that optimum concentration ratio of furfuryl alcohol and formaldehyde to AC is 1:2.5. The micropore with pore width less than 7 ${\AA}$ was formed on the polymer deposited AC at $700^{\circ}C$, $800^{\circ}C$ and $900^{\circ}C$ for 1.5 hours. Carbonization temperature at $900^{\circ}C$ for 1.5 hours was found to be optimum for CMS synthesis. The CMS produced under this condition has pore width of 5.884 ${\AA}$.

Gas Separation Properties of Microporous Carbon Membranes Containing Mesopores (중간기공을 갖는 미세다공성 탄소 분리막의 기체 투과 특성)

  • Shin, Jae Eun;Park, Ho Bum
    • Membrane Journal
    • /
    • v.28 no.4
    • /
    • pp.221-232
    • /
    • 2018
  • The silica containing carbon ($C-SiO_2$) membranes were fabricated using poly(imide siloxane)(Si-PI) and polyvinylpyrrolidone (PVP) blended polymer. The characteristics of porous carbon structures prepared by the pyrolysis of polymer blends were related with the micro-phase separation behaviors of the two polymers. The glass transition temperatures ($T_g$) of the mixed polymer blends of Si-PI and PVP were observed with a single $T_g$ using differential scanning calorimetry. Furthermore, the nitrogen adsorption isotherms of the $C-SiO_2$ membranes were investigated to define the characteristics of porous carbon structures. The $C-SiO_2$ membranes derived from Si-PI/PVP showed the type IV isotherm and possessed the hysteresis loop, which was associated with the mesoporous carbon structures. For the molecular sieving probe, the $C-SiO_2$ membranes were prepared with the ratio of Si-PI/PVP and the pyrolysis conditions, such as the pyrolysis temperature and the isothermal times. Consequently, the $C-SiO_2$ membranes prepared by the pyrolysis of Si-PI/PVP at $550^{\circ}C$ with the isothermal time of 120 min showed the $O_2$ permeability of 820 Barrer ($1{\times}10^{-10}cm^3(STP)cm/cm^2{\cdot}s{\cdot}cmHg$) and $O_2/N_2$ selectivity of 14.

Surface analysis of rayon-based carbon nanofibers and activated carbon fibers (레이온을 이용한 카본나노섬유와 활성카본섬유의 표면 특성분석)

  • Kim, Youn Jung;Ryu, Sang Hoon;Lim, Woo Taik;Choi, Sik Young
    • Analytical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.296-301
    • /
    • 2007
  • Carbon nanofibers (CNFs) are non-microporous materials with a high surface area ($100{\sim}200m^2/g$) and high purity. Therefore, the material has a high potential for use as catalyst support. Activated carbon fibers (ACFs) are of increasing concern with regard to the levels of toxic air pollutants emitted from high-technology industry. Rayon-based CNFs and ACFs was subjected to thermal oxidation under a wide variety of temperature and air conditions to modify the surface properties. Rayon-based CNFs and ACFs were prepared by using thermal chemistry. CNFs were synthesized at temperatures above $600^{\circ}C$ in an air atmosphere and grew with increased temperature and air conditions. After heating at $800^{\circ}C$ for 72 hr, carbonized rayon with ACFs had $2,662m^2/g$ (BET) of surface area and $1.41cm^3/g$ of pore volume. The resulting ACFs had a 99% surface area in which pore size was 10 nm or less, and a 60 % surface area in which pore size was 2 nm or less.

Fabrication of Gas Diffusion Layer for Fuel Cells Using Heat treatment Slurry Coating Method (열처리 슬러리코팅법을 이용한 연료전지 가스확산층의 제조)

  • Kim, Sungjin;Park, Sung Bum;Park, Yong-Il
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.25 no.2
    • /
    • pp.65-73
    • /
    • 2012
  • The Gas Diffusion Layer (GDL) of fuel cell, are required to provide both delivery of reactant gases to the catalyst layer and removal of water in either vapor or liquid form in typical PEMFCs. In this study, the fabrication of GDL containing Micro Porous Layer (MPL) made of the slurry of PVDF mixed with carbon black is investigated in detail. Physical properties of GDL containing MPL, such as electrical resistance, gas permeability and microstructure were examined, and the performance of the cell using developed GDL with MPL was evaluated. The results show that MPL with PVDF binder demonstrated uniformly distributed microstructure without large cracks and pores, which resulted in better electrical conductivity. The fuel cell performance test demonstrates that the developed GDL with MPL has a great potential due to enhanced mass transport property due to its porous structure and small pore size.

Preparation of 27Ni6Zr4O143M(M=Mg, Ca, Sr, or Ba)O/70 Zeolite Y Catalysts and Hydrogen-rich Gas Production by Ethanol Steam Reforming

  • Kim, Dongjin;Lee, Jun Su;Lee, Gayoung;Choi, Byung-Hyun;Ji, Mi-Jung;Park, Sun-Min;Kang, Misook
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.7
    • /
    • pp.2073-2080
    • /
    • 2013
  • In this study the effects of adding alkaline-earth (IIA) metal oxides to NiZr-loaded Zeolite Y catalysts were investigated on hydrogen rich production by ethanol steam reforming (ESR). Four kinds of alkaline-earth metal (Mg, Ca, Sr, or Ba) oxides of 3.0% by weight were loaded between the $Ni_6Zr_4O_{14}$ main catalytic species and the microporous Zeolite Y support. The characterizations of these catalysts were examined by XRD, TEM, $H_2$-TPR, $NH_3$-TPD, and XPS. Catalytic performances during ESR were found to depend on the basicity of the added alkaline-earth metal oxides and $H_2$ production and ethanol conversion were maximized to 82% and 98% respectively in 27($Ni_6Zr_4O_{14}$)3MgO/70Zeolite Y catalyst at $600^{\circ}C$. Many carbon deposits and carbon nano fibers were seen on the surface of $30Ni_6Zr_4O_{14}$/70Zeolite Y catalyst but lesser amounts were observed on alkaline-earth metal oxide-loaded 27($Ni_6Zr_4O_{14}$)3MO/70Zeolite Y catalysts in TEM photos after ESR. This study demonstrates that hydrogen yields from ESR are closely related to the acidities of catalysts and that alkaline-earth metal oxides reduce the acidities of 27($Ni_6Zr_4O_{14}$)3MO/70Zeolite Y catalysts and promote hydrogen evolution by preventing progression to hydrocarbons.