Browse > Article
http://dx.doi.org/10.5012/jkcs.2010.54.3.323

Synthesis of Carbon Molecular Sieve from Palm Shell Using Deposition of Polyfurfuryl Alcohol  

Sivakumar, V.M. (School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia)
Lam, Kok-Keong (School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia)
Mohamed, Abdul Rahman (School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia)
Publication Information
Abstract
In this work, an intention to synthesize the carbon molecular sieve (CMS) with ideal sieving properties from palm shell has been attempted. The process includes three main stages: carbonization, carbon dioxide activation and polymer deposition using polyfurfuryl alcohols. Palm shell based activated carbon (AC) produced by carbon dioxide activation was used as raw material in synthesis of CMS. After preparing palm shell based AC, optimum concentration ratio of furfuryl alcohols and formaldehyde to AC for CMS synthesis was obtained in this study. Deposition of polyfurfuryl alcohols on the palm shell based AC was then carried out prior to carbonization. These polymer deposited AC was subjected to carbonization at $700-900^{\circ}C$ under inert condition. All the microporous materials were analyzed using micromeritics ASAP/2020. The results show that optimum concentration ratio of furfuryl alcohol and formaldehyde to AC is 1:2.5. The micropore with pore width less than 7 ${\AA}$ was formed on the polymer deposited AC at $700^{\circ}C$, $800^{\circ}C$ and $900^{\circ}C$ for 1.5 hours. Carbonization temperature at $900^{\circ}C$ for 1.5 hours was found to be optimum for CMS synthesis. The CMS produced under this condition has pore width of 5.884 ${\AA}$.
Keywords
Carbon Molecular Sieve; Activated Carbon; Polymer deposition method; polyfurfuryl alcohol;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Wang, L. J.; Chau-Nan Hong F. Microporous and Mesoporous Materials, 2005, 77, 167.   DOI
2 Koresh, J. E.; Soffer, A. J. Chem. Soc., Faraday Trans. 1 1986, 82, 2057.   DOI
3 Freitas, M. M. A.; Figueiredo, J. L. Fuel 2001, 80, 1.   DOI
4 LaCava, A. I.; Koss, V. A.; Wickens, D. Gas Prep. Purif. 1989, 3, 180.   DOI   ScienceOn
5 Juntgen, H.; Knoblauch, K.; Harder, K. Fuel 1981, 60, 817.   DOI
6 Nandi; Satyendra, P.; Walker, Jr. P. L. Separation Science 1976, 11, 441.   DOI
7 Wan Daud, W. M. A.; Ahmad, M. A.; Aroua, M. K. Separation and Purification Technology 2007, 57, 289.   DOI
8 Bello, G.; Garcia, R.; Arriagada, R.; Escribano, A. S.; Reinoso, F. R. Microporousand Mesoporous Material 2002, 56, 139.   DOI
9 Freitas, M. M. A.; Figueiredo, J. L. Fuel 2001, 80, 1.   DOI
10 Kawabuchi, Y.; Kishino, M.; Kawano, S.; Whitehurst, D. D.; ochida, I. Langmuir 1996, 12, 4281.   DOI   ScienceOn
11 Somanathan, T.; Pandurangan, A.; Sathiyamoorthy, D. Journal of Molecular Catalysis A: Chemical 2006, 256, 193.   DOI
12 Schmitt, J. L. Jr.; Walker, P. L., Jr. Carbon 1972, 10, 87.   DOI
13 http://www.malaysiapalmoil.org/life/implanting.asp
14 http://envdevmalaysia.wordpress.com/2009/10/14/world-growthreportpalm- oil-is-most sustainable-vegetable-oil/
15 Vyas, S. N.; Patwardhan, S. R.; Vijayalakshmi, S. Bathula Gangadhar, Fuel 1993, 72, 551.   DOI
16 Moreira R. F. P. M.; José, H. J.; Rodrigues, A. E. Carbon 2001, 39, 2269.   DOI
17 Zhang, T.; Walawender, W. P.; Fan, L. T. Bioresource Technology 2005, 96, 1929.   DOI