• Title/Summary/Keyword: Microplastic toxicity

Search Result 8, Processing Time 0.025 seconds

Research Trends of Microplastic in Food via Centrality Analysis Method (중심성 분석을 이용한 식품 미세플라스틱의 최근 연구동향)

  • Cho, Sung-Yong;Byun, Ki-sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.508-515
    • /
    • 2020
  • This study examined the research trends of "Microplastic in food" with a scholar databaseusing the centrality analysis method. The data was based on research papers published from 2011 to 2020, sorted by "microplastic" and "food". The centrality analysis methodology(Degree centrality, Closeness centrality, Betweenness centrality) was applied, followed by a keyword-based frequency occurrence analysis. The results suggested that more than 30% of the total keywords were related to "marine" and "pollution". Therefore, research on the effects of microplastic pollution on the ecosystem had mainly been conducted. On the other hand, only 6% of the keywords were related to "toxicity" and "ingestion". Hence,the number of studies on microplastic exposure caused by bioaccumulation or food are still insufficient. These results can be used to provide directions for future research, as well as provide basic data for political decision-making on the environmental hazards of microplastic.

Evaluation of Liver Toxicity of Neonates Following Intragastric Administration or Intratracheal Instillation of Polyethylene Microplatics to Pregnant Mice (폴리에틸렌 미세플라스틱의 임신 마우스 위내 투여 및 기도 점적에 따른 신생자 간독성 평가)

  • Kim, GeunWoo;Kim, ChangYul
    • Journal of Environmental Health Sciences
    • /
    • v.48 no.2
    • /
    • pp.106-115
    • /
    • 2022
  • Background: Current research suggests that humans are exposed to microplastics through consumption of foods and beverages, the airway route, and a variety of other means. Objectives: We evaluated oxidative stress and inflammation from polyethylene microplastics (PE-MPs) in the neonatal liver through intragastric administration or intratracheal instillation in pregnant mice. Methods: PE-MPs were administered from gestational day 9 to postnatal day 7. The intragastric administration group (0.01 mg/mouse/day or 0.1 mg/mouse/day) and intratracheal instillation group (6 ㎍/mouse/day or 60 ㎍/mouse/day) of PE-MPs were administered. After sacrifice, the oxidative stress and inflammation of the neonatal livers were measured. Results: As a result of the oxidative stress caused by PE-MPs in the neonatal livers, glutathione peroxidase decreased in a concentration-dependent manner in the intragastric administration group compared to the control group and intratracheal instillation decreased in high concentration PE-MPs. The catalase level increased at high concentrations of intragastric administration and intratracheal instillation. To confirm the level of inflammation caused by PE-MPs, monocyte chemoattractant protein-1 and tumor necrosis factoralpha were increased compared to the control group except for intratracheal intilation-high concentration PEMPs. The C-reactive protein level was decreased by intragastric administration compared to the control group and intratracheal instillation was increased compared to the control group. Conclusions: Despite the difficulty in comparing the toxic intensity between intragastric administration and intratracheal instillation of PE-MPs, our study revealed that oxidative stress and inflammation were induced in the neonatal liver. However, it is necessary to evaluate the toxic effects of microplastics on various organs as well. Overall, the present study indicates that the evaluation of toxic effects of long-term microplastic exposure, potential of microplastic toxicity on next-generation offspring and toxicity mechanism in human should be considered for further investigations.

Toxic Effects of Microplastic on Hematological Parameters, Plasma Components, and Antioxidant Responses in the Korean Rockfish Sebastes schlegelii (조피볼락(Sebastes schlegelii)의 혈액성상, 혈장성분 및 항산화 반응에 미치는 미세플라스틱의 독성 영향)

  • Jung-Hoon Kang;Ji Yeon Ko;Young-Bin Yu;Jae-Ho Choi;Ju-Hyeong Lee;Ju-Chan Kang
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.57 no.3
    • /
    • pp.227-238
    • /
    • 2024
  • This study aimed to evaluate the effects of polyethylene microplastic (PE-MPs) via measuring the growth performance, hematological parameters, and antioxidant responses in Korean rockfish Sebastes schlegelii exposed to waterborne polyethylene microplastic with dimensions of 22-71 ㎛. S. schlegelii (mean weight, 34.55±5.82 g; mean length, 12.59±0.79 cm) were exposed to PE-MPs at concentrations of 0, 400, 800, 1,600 and 3,200 ㎍/L for 10 and 20 days. PE-MPs significantly affected growth performance, hematological parameters, plasma components, and antioxidant responses in a concentration-dependent manner. At a concentration ≥1,600 ㎍/L, PE-MPs significantly decreased body weight gain and specific growth rate, and significantly increased the hepatosomatic index. Hematological parameters showed a significant decrease in total red blood cell count and hemoglobin levels. Plasma components showed a significant increase in glucose, aspartate aminotransferase, and alanine transaminase levels, whereas total protein, calcium, and magnesium levels significantly decreased. Exposure to ≥1,600 ㎍/L PE-MPs also induced reactive oxygen species generation in the gill and liver, significantly increasing superoxide dismutase and catalase activity. These findings suggest that exposure to ≥1,600 ㎍/L PE-MPs could significantly change growth performance, hematological parameters, plasma components, and antioxidant responses, resulting in physiological toxicity.

Governance Strategy for Marine Microplastic Risk Assessment based on Ecosystem Protection (해양생태계 보호 기반의 해양 미세플라스틱 위해성평가 전략)

  • Jee-Hyun Jung;Won Joon Shim;Moonkoo Kim
    • Journal of Marine Life Science
    • /
    • v.8 no.1
    • /
    • pp.87-92
    • /
    • 2023
  • Microplastic particles are ubiquitous in the environment and not standardized particles of size, shape, or type. Therefore, it is very limited to establish a risk assessment framework that accurately evaluated and manage the multi-dimension of marine environment including seawater and sediment based on toxic data. In the study, we review the characteristics and effects of marine environmental microplastic and suggest risk assessment framework (draft) based on the distribution and impact of marine environmental microplastics. Although, the characteristics of environmental microplastic are very widely but the most abundant toxic data are concentrated on unique shape and type, and there are also large gaps of test organism between laboratory-exposed organisms and resident species. Great limitations with respect to toxicity data quality also exist for traditional effect assessment methods, which in reliability of the resulting risk characterizations. However, considering the fact that the international community's movement on microplastics management is gradually strengthening and the pollution level of microplastics in marine environment is increasing, further research on environmental relevant risk assessment technique should be proposed based on the characteristics of microplastics in the marine environment.

Toxicities Demonstrated in Dams and Neonates following Intragastric Intubation of Polyethylene Microplastics to Pregnant Mice (폴리에틸렌 미세플라스틱의 임신 마우스 위내투여에 따른 모체 및 신생자 독성평가)

  • Song, YoungMin;Kim, ChangYul
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.5
    • /
    • pp.446-453
    • /
    • 2021
  • Background: Plastic particles less than 5 mm in diameter (microplastics) are well-known for causing various toxicities such as lung inflammation, oxidative stress, genotoxicity, and reproductive toxicity. As microplastics become smaller, they can move across cell membranes, the placenta, and the blood-brain barrier. Objectives: We evaluated the toxicities of polyethylene microplastics (PE-PMs) in dams and neonates through intragastric intubation of pregnant ICR mice. Methods: Low concentrations (0.01 mg/mouse/day) and high concentrations (0.1 mg/mouse/day) of polyethylene microplastics were administered from the ninth day of pregnancy to postnatal day seven. The control group was administered with distilled water. On the day of sacrifice, the weight of dams and neonates and the organ weight of neonates was measured. Further, acetylcholinesterase levels and glutathione peroxidase levels were evaluated by using a blood sample obtained on the sacrifice day. Results: No significant difference in the number of neonates was found, but the body weight gain of dams was seen to be lower in the low-dose group. On the other hand, we observed a consecutively declining trend in the weight gain and organ weight of neonates among the high-, control, and low-dose groups. Meanwhile, the serum acetylcholinesterase and glutathione peroxidase level were higher in the low-dose group compared to the control group. Further, the dose-dependent accumulation of microplastics in the organs of neonates revealed the transport of plastic particles from dams to their offspring. Conclusions: Although the exact mechanism of toxicity caused by microplastics could not be confirmed, it was validated that exposure to microplastics during pregnancy and lactation causes its migration between generations and accumulation throughout the body. Hence, it is necessary to evaluate the systemic toxicity of microplastics and assessment of co-morbidities such as second-generation toxicity, neurotoxicity, and depression following long-term exposure.

Oxidative Stress and Apoptosis in Goldfish (Carassius auratus) Caused by Exposure to Different Concentrations of Micro-polystyrene

  • Li, Zhongze;Song, Jin Ah;Choi, Cheol Young
    • Ocean and Polar Research
    • /
    • v.43 no.3
    • /
    • pp.141-148
    • /
    • 2021
  • Microplastic contamination in waterbodies is a growing source of concern for researchers and other stakeholders. We investigated oxidative stress and toxicity in goldfish (Carassius auratus) in response to exposure to 1-㎛ diameter micro-polystyrene (MP) at concentrations of 0, 10, 100, and 1000 beads/mL (MP 0, MP 10, MP 100, and MP 1000 groups) for 7 d (at day 0, 1, 3, 5, and 7). We analyzed the survival rates; superoxide dismutase (SOD) and catalase (CAT) mRNA expression levels in the liver; SOD and CAT activity in the plasma; caspase-3 mRNA expression in the liver; and the levels of hydrogen peroxide (H2O2) in plasma. Terminal transferase dUTP nick end labeling (TUNEL) assays were also conducted to determine apoptosis levels in the liver. All fish in the MP 1000 group died by day 7 and the MP 100 group had a lower survival rate than the MP 10 and MP 0 groups. The mRNA expression as well as SOD, CAT, and caspase-3 activity levels were increased significantly with increases in MP concentration and exposure time. Finally, according to the TUNEL assay, more apoptosis was observed in the MP 1000 group at day 5 than in other groups. In summary, MP concentrations above 100 beads/mL caused death and oxidative stress to goldfish. We conclude that MP can cause oxidative stress and apoptosis in goldfish, which leads to death.

The effects of microplastics on marine ecosystem and future research directions (미세플라스틱의 해양 생태계에 대한 영향과 향후 연구 방향)

  • Kim, Kanghee;Hwang, Junghye;Choi, Jin Soo;Heo, Yunwi;Park, June-Woo
    • Korean Journal of Environmental Biology
    • /
    • v.37 no.4
    • /
    • pp.625-639
    • /
    • 2019
  • Microplastics are one of the substances threatening the marine ecosystem. Here, we summarize the status of research on the effect of microplastics on marine life and suggest future research directions. Microplastics are synthetic polymeric compounds smaller than 5 mm and these materials released into the environment are not only physically small but do not decompose over time. Thus, they accumulate extensively on land, from the coast to the sea, and from the surface to the deep sea. Microplastic can be ingested and accumulated in marine life. Furthermore, the elution of chemicals added to plastic represents another risk. Microplastics accumulated in the ocean affect the growth, development, behavior, reproduction, and death of marine life. However, the properties of microplastics vary widely in size, material, shape, and other aspects and toxicity tests conducted on several properties of microplastics cannot represent the hazards of all other microplastics. It is necessary to evaluate the risks according to the types of microplastic, but due to their variety and the lack of uniformity in research results, it is difficult to compare and analyze the results of previous studies. Therefore, it is necessary to derive a standard test method to estimate the biological risk from different types of microplastics. In addition, while most of the previous studies were conducted mostly on spheres for the convenience of the experiments, they do not properly reflect the reality that fibers and fragments are the main forms of microplastics in the marine environment and in fish and shellfish. Furthermore, studies have been conducted on additives and POPs (persistent organic pollutants) in plastics, but little is known about their toxic effects on the body. The effects of microplastics on the marine ecosystems and humans could be identified in more detail if standard testing methods are developed, microplastics in the form of fibers and fragments rather than spheres are tested, and additives and POPs are analyzed. These investigations will allow us to identify the impact of microplastics on marine ecosystems and humans in more detail.

Evaluation of microplastic in the inflow of municipal wastewater treatment plant according to pretreatment methods (전처리 방법에 따른 하수처리장 유입수에서의 미세플라스틱 성상분석 평가)

  • Kim, Sungryul;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.24 no.2
    • /
    • pp.83-92
    • /
    • 2022
  • The amount of the plastic waste has been increasing according to global demand for plastic. Microplastics are the most hazardous among all plastic pollutants due to their toxicity and unknown physicochemical properties. This study investigates the optimal methodology that can be applied to sewage samples for detecting microplastics before discussing reducing microplastics in MWTPs. In this study, the effect of different pretreatment methods while detecting microplastic analysis of MWTP influent samples was investigated; the samples were collected from the J sewage treatment plant. There are many pretreatment methods but two of them are widely used: Fenton digestion and hydrogen peroxide oxidation. Although there are many pretreatment methods that can be applied to investigate microplastics, the most widely used methods for sewage treatment plant samples are Fenton digestion and H2O2 oxidation. For each pretreatment method, there were factors that could cause an error in the measurement. To overcome this, in the case of the Fenton digestion pretreatment, it is recommended to proceed with the analysis by filtration instead of the density separation method. In the case of the H2O2 oxidation method, the process of washing with distilled water after the reaction is recommended. As a result of the analysis, the concentration of microplastics was measured to be 2.75ea/L for the sample using the H2O2 oxidation method and 3.2ea/L for the sample using the Fenton oxidation method, and most of them were present in the form of fibers. In addition, it is difficult to guarantee the reliability of measurement results from quantitative analysis performed via microscope with eyes. A calibration curve was created for prove the reliability. A total of three calibration curves were drawn, and as a result of analysis of the calibration curves, all R2 values were more than 0.9. This ensures high reliability for quantitative analysis. The qualitative analysis could determine the series of microplastics flowing into the MWTP, but could not confirm the chemical composition of each microplastic. This study can be used to confirm the chemical composition of microplastics introduced into MWTP in the future research.