DOI QR코드

DOI QR Code

Oxidative Stress and Apoptosis in Goldfish (Carassius auratus) Caused by Exposure to Different Concentrations of Micro-polystyrene

  • Li, Zhongze (Division of Marine BioScience, Korea Maritime & Ocean University) ;
  • Song, Jin Ah (Division of Marine BioScience, Korea Maritime & Ocean University) ;
  • Choi, Cheol Young (Division of Marine BioScience, Korea Maritime & Ocean University)
  • Received : 2021.06.18
  • Accepted : 2021.07.15
  • Published : 2021.09.30

Abstract

Microplastic contamination in waterbodies is a growing source of concern for researchers and other stakeholders. We investigated oxidative stress and toxicity in goldfish (Carassius auratus) in response to exposure to 1-㎛ diameter micro-polystyrene (MP) at concentrations of 0, 10, 100, and 1000 beads/mL (MP 0, MP 10, MP 100, and MP 1000 groups) for 7 d (at day 0, 1, 3, 5, and 7). We analyzed the survival rates; superoxide dismutase (SOD) and catalase (CAT) mRNA expression levels in the liver; SOD and CAT activity in the plasma; caspase-3 mRNA expression in the liver; and the levels of hydrogen peroxide (H2O2) in plasma. Terminal transferase dUTP nick end labeling (TUNEL) assays were also conducted to determine apoptosis levels in the liver. All fish in the MP 1000 group died by day 7 and the MP 100 group had a lower survival rate than the MP 10 and MP 0 groups. The mRNA expression as well as SOD, CAT, and caspase-3 activity levels were increased significantly with increases in MP concentration and exposure time. Finally, according to the TUNEL assay, more apoptosis was observed in the MP 1000 group at day 5 than in other groups. In summary, MP concentrations above 100 beads/mL caused death and oxidative stress to goldfish. We conclude that MP can cause oxidative stress and apoptosis in goldfish, which leads to death.

Keywords

Acknowledgement

This research was supported by the project titled "Yeongnam Sea Grant" (grant number 20170346) funded by the Ministry of Oceans and Fisheries, South Korea.

References

  1. Aliko V, Qirjo M, Sula E, Morina V, Faggio C (2018) Antioxidant defense system, immune response and erythron profile modulation in goldfish Carassius auratus, after acute manganese treatment. Fish Shellfish Immunol 76:101-109. doi:10.1016/j.fsi.2018.02.042
  2. Besseling E, Wang B, Lurling M, Koelmans AA (2014) Nanoplastic affects growth of Scenedesmus obliquus and reproduction of Daphnia magna. Environ Sci Technol 48(20):12336-12343. doi:10.1021/es503001d
  3. Choi JS, Jung YJ, Hong NH, Hong SH, Park JW (2018) Toxicological effects of irregularly shaped and spherical microplastics in a marine teleost, the sheepshead minnow Cyprinodon variegatus. Mar Pollut Bull 129(1):231-240. doi:10.1016/j.marpolbul.2018.02.039
  4. De Boeck G, Smolders R, Blust R (2010) Copper toxicity in gibel carp Carassius auratus gibelio: importance of sodium and glycogen. Comp Biochem Physiol C 152(3): 332-337. doi:10.1016/j.cbpc.2010.05.008
  5. Eo S, Hong SH, Song YK, Han GM, Shim WJ (2019) Spatiotemporal distribution and annual load of microplastics in the Nakdong River, South Korea. Water Res 160:228-237. doi:10.1016/j.watres.2019.05.053
  6. Espinosa C, Beltran JMG, Esteban MA, Cuesta A (2018) In vitro effects of virgin microplastics on fish head-kidney leucocyte activities. Environ Pollut 235:30-38. doi:10.1016/j.envpol.2017.12.054
  7. Gao JW, Zhao SS, Li FY, Yang XM, Zhang J, Xiong AQ, Li FM (2021) Effects of micro plastics on food intake and antioxidant defense system of Daphnia magna. Environ Sci Res 34(5):1205-1212. doi:10.13198/j.issn.1001-6929.2021.01.25
  8. Geyer R, Jambeck JR, Law KL (2017) Production, use, and fate of all plastics ever made. Sci Adv 3(7):e1700782. doi:10.1126/sciadv.1700782
  9. Hamed M, Soliman HA, Osman AG, Sayed AEDH (2020) Antioxidants and molecular damage in Nile Tilapia (Oreochromis niloticus) after exposure to microplastics. Environ Sci Pollut Res 27(13):14581-14588. doi:10.1007/s11356-020-07898-y
  10. Hidalgo-Ruz V, Gutow L, Thompson RC, Thiel M (2012) Microplastics in the marine environment: a review of the methods used for identification and quantification. Environ Sci Technol 46(6):3060-3075. doi:10.1021/es2031505
  11. Jiang WD, Liu Y, Jiang J, Wu P, Feng L, Zhou XQ (2015) Copper exposure induces toxicity to the antioxidant system via the destruction of Nrf2/ARE signaling and caspase-3-regulated DNA damage in fish muscle: amelioration by myo-inositol. Aquat Toxicol 159:245-255. doi:10.1016/j.aquatox.2014.12.020
  12. Kashiwagi A, Kashiwagi K, Takase M, Hanada H, Nakamura M (1997) Comparison of catalase in diploid and haploid Rana rugosa using heat and chemical inactivation techniques. Comp Biochem Physiol C 118(3):499-503. doi:10.1016/S0305-0491(97)00216-2
  13. Lee J, Hong S, Song YK, Hong SH, Jang YC, Jang M, Heo NK, Kang DS, Shim WJ (2013) Relationships among the abundances of plastic debris in different size classes on beaches in South Korea. Mar Pollut Bull 77(1-2):349-354. doi:10.1016/j.marpolbul.2013.08.013
  14. Li GX, Li B, Huang H, Jiang QF (2020) Effects of microplastics combined with cadmium on antioxidant physiology of Ruditapes philippinarum. Environ Dev 32(12):100-102. doi:10.16647/j.cnki.cn15-1369/X.2020.12.050
  15. Mates JM (2000) Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Toxicol 153(1-3):83-104. doi:10.1016/S0300-483X(00)00306-1
  16. Nilsson GE, Renshaw GM (2004) Hypoxic survival strategies in two fishes: extreme anoxia tolerance in the North European crucian carp and natural hypoxic preconditioning in a coral-reef shark. J Exp Biol 207(18):3131-3139. doi:10.1242/jeb.00979
  17. Porter AG, Janicke RU (1999) Emerging roles of caspase-3 in apoptosis. Cell Death Differ 6(2):99-104. doi:10.1038/sj.cdd.4400476
  18. Qiang L, Cheng J (2021) Exposure to polystyrene microplastics impairs gonads of zebrafish Danio rerio. Chemosphere 263:128161. doi:10.1016/j.chemosphere.2020.128161
  19. Roch P (1999) Defense mechanisms and disease prevention in farmed marine invertebrates. Aquaculture 172(1-2):125-145. doi:10.1016/S0044-8486(98)00439-6
  20. Song JA, Choi CY, Park HS (2020) Exposure of bay scallop Argopecten irradians to micro-polystyrene: bioaccumulation and toxicity. Comp Biochem Physiol C 236:108801. doi:10.1016/j.cbpc.2020.108801
  21. Sussarellu R, Suquet M, Thomas Y, Lambert C, Fabioux C, Pernet MEJ, Huvet A (2016) Oyster reproduction is affected by exposure to polystyrene microplastics. P Natl Acad Sci USA 113(9):2430-2435. doi:10.1073/pnas.1519019113
  22. Takada M, Tachihara K, Kon T, Yamamoto G, Iguchi KI, Miya M, and Nishida M (2010). Biogeography and evolution of the Carassius auratus-complex in East Asia. BMC Evolut Biol 10(1):1-18. doi:10.1186/1471-2148-10-7
  23. Tallec K, Huvet A, Di Poi C, Gonzalez-Fernandez C, Lambert C, Petton B, Paul-Pont I (2018) Nanoplastics impaired oyster free living stages, gametes and embryos. Environ pollut 242:1226-1235. doi:10.1016/j.envpol.2018.08.020
  24. Wright SL, Thompson RC, Galloway TS (2013) The physical impacts of microplastics on marine organisms: a review. Environ Pollut 178:483-492. doi:10.1016/j.envpol.2013.02.031
  25. Yang H, Xiong H, Mi K, Xue W, Wei W, Zhang Y (2020) Toxicity comparison of nano-sized and micron-sized microplastics to goldfish Carassius auratus larvae. J Hazard Mater 388:122058. doi:10.1016/j.jhazmat.2020.122058
  26. Yin K, Wang Y, Zhao H, Wang D, Guo M, Mu M, Xing M (2021) A comparative review of microplastics and nanoplastics: toxicity hazards on digestive, reproductive and nervous system. Sci Total Environ 774(20):145758. doi:10.1016/j.scitotenv.2021.145758
  27. Yin L, Chen B, Xia B, Shi X, Qu K (2018) Polystyrene microplastics alter the behavior, energy reserve and nutritional composition of marine jacopever Sebastes schlegelii J Hazard Mater 360:97-105. doi:10.1016/j.jhazmat.2018.07.110
  28. Zhao S, Zhu L, Wang T, Li D (2014) Suspended microplastics in the surface water of the Yangtze estuary system, China: first observations on occurrence, distribution Mar Pollut Bull 86(1-2):562-568. doi:10.1016/j.marpolbul.2014.06.032