• Title/Summary/Keyword: Microphone Signal

Search Result 249, Processing Time 0.025 seconds

Intrusion Detection Based on the Sound Field Variation of Audible Frequency Band (가청 주파수대 음장 변화 측정 기반 침입 감지 기술)

  • Lee, Sung-Q;Park, Kang-Ho;Yang, Woo-Seok;Kim, Jong-Dae;Kim, Dae-Sung;Kim, Ki-Hyun;Wang, Se-Myung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.3
    • /
    • pp.212-219
    • /
    • 2011
  • In this paper, intrusion detection technique based on the sound field variation of audio frequency in the security space is proposed. The sound field formed by sound source can be detected with the microphone when the obstacle or intruder is positioned. The sound field variation due to the intruder is mainly caused by the interference of audio wave. With the help of numerical simulation of sound field formations, the increase or decrease of sound pressure level is analyzed not only by the obstacle, but also by the intruder. Even the microphone is positioned behind the source, sound pressure level can be increased or decreased due to the interference of sound wave. Frequency response test is performed with Gaussian white noise signal to get the whole frequency response from 0 to half of sampling frequency. There are three security cases. Case 1 is the situation of empty space with and without intruder, case 2 is the situation of blocking obstacle with and without intruder, and case 3 is the situation of side blocking obstacle with and without intruder. At each case, the frequency response is obtained first at the security space without intruder, and second with intruder. From the experiment, intruder size of diameter of 50 cm pillar can be successfully detected with the proposed technique. Moreover, the case 2 and case 3 bring about bigger sound field variation. It means that the proposed technique have the potential of more credible security guarantee in real situation.

An Enhancement of Speaker Location System Using the Low-frequency Phase Restoration Algorithm and Its Implementation (저주파 위상 복원 알고리듬을 이용한 화자 위치 추적 시스템의 성능 개선과 구현)

  • 이학주;차일환;윤대희;이충용
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.22-28
    • /
    • 2001
  • This paper describes the implementation of a robust speaker position location system using the voice signal received by microphone array. To be robust to the reverberation which is the major factor of the performance degradation, low-frequency phase restoration algorithm which eliminates the influence of reverberations using the low-frequency information of the CPSP function is proposed. The implemented real-time system consists of a general purpose DSP (TMS320C31 of Texas instruments), analog part which contains amplifiers and filters, and digital part which is composed of the external memory and 12-bit A/D converter. In the real conference room environment, the implemented system that was constructed by the proposed algorithms showed better performance than the conventional system. The error of the TDOA estimation reduced more than 15 samples.

  • PDF

Building Bearing Fault Detection Dataset For Smart Manufacturing (스마트 제조를 위한 베어링 결함 예지 정비 데이터셋 구축)

  • Kim, Yun-Su;Bae, Seo-Han;Seok, Jong-Won
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.488-493
    • /
    • 2022
  • In manufacturing sites, bearing fault in eletrically driven motors cause the entire system to shut down. Stopping the operation of this environment causes huge losses in time and money. The reason of this bearing defects can be various factors such as wear due to continuous contact of rotating elements, excessive load addition, and operating environment. In this paper, a motor driving environment is created which is similar to the domestic manufacturing sites. In addition, based on the established environment, we propose a dataset for bearing fault detection by collecting changes in vibration characteristics that vary depending on normal and defective conditions. The sensor used to collect the vibration characteristics is Microphone G.R.A.S. 40PH-10. We used various machine learning models to build a prototype bearing fault detection system trained on the proposed dataset. As the result, based on the deep neural network model, it shows high accuracy performance of 92.3% in the time domain and 98.3% in the frequency domain.

Development of Wireless Electronic Cardiogram and Stethoscope (ECGS) to Measure ECG Signal and Heart Sound (심전도와 심음을 측정하기 위한 무선 전자 심전도-심음 청진기 개발)

  • Cho, Han Seok;Kang, Young-Hwan;Park, Jae-Soon;Choi, Jin Gyu;Joung, Yeun-Ho;Koo, Chiwan
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.124-130
    • /
    • 2022
  • In this paper, we proposed a portable electronic cardiogram and stethoscope (ECGS) that can simultaneously perform the electrocardiogram (ECG) and auscultation tests to increase the reliability of diagnosis of heart disease. To measure the ECG and heart sound (HS) at the same time, three ECG electrodes and a microphone sensor were combined into a triangular shape with a width of 90 mm and a height of 97 mm that can be held in one hand. In order to prevent skin problems when they contact the patient's skin, a capacitive coupled electrode was selected as the ECG electrode and a silicone material was used in a chest piece with the microphone sensor. For the signals measured from the electrodes and the chest piece, filters were respectively configured to pass only the signals of 0.01-100 Hz and 20-250 Hz, which are frequency bands for ECG and HS. The filtered ECG and HS analog signals were converted into digital signals and transmitted to a PC using wireless communication for monitoring them. The HS could be auscultated simultaneously using an earphone. The monitored ECG had an SNR of about 34 dB and a P-QRS-T waveform is clearly visible. In addition, the HS had an SNR of about 28 dB and both S1 and S2 are clearly visible. It is expected that it can aid doctors' inexperience in analyzing the ECG and HS.

Active control of pump noise of dishwashers using FxLMS algorithm (FxLMS 알고리듬 기법을 이용한 식기 세척기의 펌프 소음 능동 제어)

  • Tark, Un-su;Oh, Han-Eum;Hong, Chinsuk;Jeong, Weui-Bong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.1
    • /
    • pp.46-54
    • /
    • 2021
  • In this paper, active noise control was performed to reduce radiated noise in the low frequency band of dishwashers. First, through an analysis of the noise environment of the dishwasher, it was confirmed that the pump noise contributed the most to the radiated noise in the low frequency band, From the result of the noise environment analysis, the reference signal was selected to be the vibration signal of the pump body. The reference signal was obtained by using the accelerometer on the pump body, which can prevent acoustic feedback. The error signal sensor was selected as a microphone located at 1 m in front of the dishwasher and 0.5 m in height. And to design the controller, the error signal and the reference signal were measured at the operational rpms of the dishwasher at 2,500 rpm, 2,600 rpm and 2,800 rpm, and the secondary path transfer function was measured. The designed controller was mounted on Digital Signal Processor (DSP) equipment, and the control performance was verified experimentally. As a result of the measurement at the 3 operational rpms, the 7th multiple component of pump operating frequency decreased by 1.93 dB, 4.43 dB, 5.15 dB per rpm, and the 12th multiple component decreased by 6.67 dB, 2.34 dB, 4.28 dB per rpm. And overall Sound Pressure Level (SPL) decreased by 0.84 dB, 2.58 dB, 1.48 dB by rpm.

Interference Suppression Using Principal Subspace Modification in Multichannel Wiener Filter and Its Application to Speech Recognition

  • Kim, Gi-Bak
    • ETRI Journal
    • /
    • v.32 no.6
    • /
    • pp.921-931
    • /
    • 2010
  • It has been shown that the principal subspace-based multichannel Wiener filter (MWF) provides better performance than the conventional MWF for suppressing interference in the case of a single target source. It can efficiently estimate the target speech component in the principal subspace which estimates the acoustic transfer function up to a scaling factor. However, as the input signal-to-interference ratio (SIR) becomes lower, larger errors are incurred in the estimation of the acoustic transfer function by the principal subspace method, degrading the performance in interference suppression. In order to alleviate this problem, a principal subspace modification method was proposed in previous work. The principal subspace modification reduces the estimation error of the acoustic transfer function vector at low SIRs. In this work, a frequency-band dependent interpolation technique is further employed for the principal subspace modification. The speech recognition test is also conducted using the Sphinx-4 system and demonstrates the practical usefulness of the proposed method as a front processing for the speech recognizer in a distant-talking and interferer-present environment.

Advanced Sound Source Localization Study Using De-noising Filter based on the Discrete Wavelet Transform(DWT) (이산 웨이블릿 변환 기반 디-노이징 필터를 이용한 향상된 음원 위치 추정 연구)

  • Hwang, Bo-Yeon;Jung, Jae-Hoon;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.12
    • /
    • pp.1185-1192
    • /
    • 2015
  • In this paper, a study of advanced sound source localization is conducted by eliminating the noise of the sound source using the discrete wavelet transform. And experiments are conducted to evaluate the performance of the proposed system that the mobile robot follows sound source stably. In addition, we compare the position estimation performance by applying a discrete wavelet transform to improve the reliability of the sound signal. The experimental results reveal that the de-nosing filter which removes the noise component in sound source can make the performance of position estimation more precisely and help the mobile robot distinguish the objective sound source clearly.

Source signal separation by blind processing for a microphone array system (마이크로폰 어레이 시스템을 사용한 브라인드 처리에 의한 음원분리)

  • ;Usagawa Tsuyoshi;Masanao Ebata
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.609-612
    • /
    • 2000
  • 본 논문에서는 음원에 관한 정보가 미지의 상황에서 마이크로폰 어레이를 사용하여 두 음원신호를 분리하는 ,시스템을 제안한다 이 시스템은 두 단계로 구성되어 있으며, 첫 번째 단계에서는 파워가 큰 제 1음원의 DOA(Direction Of Arrival)를 추정하고, AMUSE(Algorithm for Multiple Unknown Signals Extraction)법을 사용한 Blind Deconvolution에 의해 음원신호의 분리를 행한다 두 번째 단계에서는 파워가 낮은 제 2음원의 강조신호를 사용하여 DSA(Delay and Sum Array)법에 의해 제 2음원의 DOA를 추정하고,AMUSE법의 출력신호와 두 음원의 DOA를 이용하여 ANF(Adaptive Notch Filter)를 구성하고, 두 음원신호의 재 분리를 행한다. 그리고, 시뮬레이션을 통해 제안한 방법의 유효성을 검토한 결과 두 음원 신호가 분리 가능한 것이 확인되었다.

  • PDF

Crack Detection in Eggshell by Acoustic Responses (음향반응에 의한 계란의 크랙검출에 관한 연구)

  • 조한근;최완규;백진하
    • Journal of Biosystems Engineering
    • /
    • v.23 no.1
    • /
    • pp.67-74
    • /
    • 1998
  • A nondestructive quality inspection technique using acoustic impulse response method was developed for eggshell inspection. An experimental system was built to generate the impact force, to measure the response signal and to analyze the frequency spectrum. This system includes an impulse generating unit, an egg holding seal a microphone with preamplifier, and a DSP board installed on Personal Computer. A simple algorithm .was developed for crack detection. Using the developed system with algorithm, crack detection ability was evaluated and the error rate to estimate the normal egg as cracked was found to be 4% and the error rate to estimate the cracked egg as normal was also found to be 4%. This system could be adopted in industry with some modification.

  • PDF

Measurement of the acoustic impedance by using beamforming method in a free-field (자유 음장에서 빔형성 방법을 이용한 음향 임피던스 측정)

  • Sun, Jong-Cheon;Shin, Chang-Woo;Baek, Sun-Gwon;Kang, Yeon-June
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.969-974
    • /
    • 2007
  • In this paper, a beamforming technique is introduced to measure the acoustic impedance at both normal and oblique incidence in a free field. The acoustic impedance is obtained by separating incident and reflected signals using the adaptive nulling method which is one of the various beamforming algorithms. To obtain better results, pressure vector commonly used in array signal processing is replaced with the transfer function vector between each microphone and the white Gaussian noise is suppressed by a wavelet shrinkage technique. The experiments conducted in a semi-anechoic room show that the proposed method is efficient and accurate in measuring the acoustic impedance of sound absorbing materials under a free field condition.

  • PDF