• Title/Summary/Keyword: Microparticle

Search Result 128, Processing Time 0.042 seconds

Synthesis of Size Controllable Silk Fibroin Microparticles and Their Stability on Different Solutions

  • Aryal, Susmita;Yu, Chan Yeong;Cho, Hyeyoun;Choi, Seung Ho;Key, Jaehong
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.251-258
    • /
    • 2022
  • Silk fibroin microparticles were fabricated using a phase separation technique between silk fibroin solution and polyvinyl alcohol. We found that the concentration of polyvinyl alcohol determines the size of microparticles. The mean diameter of the silk fibroin microparticles varied from 3.48 ㎛ to 4.05 ㎛. The silk fibroin microparticle size increased as a function of the concentration of PVA in aqueous silk solution. The resulting silk fibroin microparticles have narrow size distribution (i.e. monodisperse) and smooth/spherical surface. Also, we studied the effects of mouse serum, sodium phosphate buffer (PBS), and pH on the stability of the silk fibroin microparticles. Overall, we demonstrated the simple method to fabricate and to control the silk fibroin microparticles that makes our silk microparticles to be usable for a potential drug delivery carrier.

Retention, Drainage, Formation, and Fracture Toughness Depending on Retention System, Molecular Weights of Polyelectrolytes and Dosage Sequences (보류시스템, 고분자 전해질 분자량과 약품투입순서에 따른 보류, 탈수, 지합, 파괴인성의 변화)

  • Chae, Hee-Jae;Kim, Mun-Sung;Park, Chang-Soon;Park, Jong-Moon
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.41 no.2
    • /
    • pp.13-19
    • /
    • 2009
  • In order to produce high quality paper at the lowest cost in high speed, typically various polyelectrolytes as retention aids were used. Retention systems such as single polymer system, dual polymer system, and microparticle system were used. The objective of this study was to analyze the changes of retention, drainage, formation and fracture toughness depending on types of retention system, molecular weight of C-PAM and dosage sequences of agents. When single polymer system was applied, retention was increased with poor formation and drainage. When common microparticle system(C-PAM/bentonite) was used, high molecular weight PAM gave high retention and fast drainage, but poor formation. When the microparticle system with reverse dosage sequence(bentonite/C-PAM) was used, low molecular weight PAM gave high retention, fast drainage and good formation. When various retention agents were applied, fracture toughness was increased than that of blank. When using high molecular weight PAM and consequently causing excessive flocculation, fracture toughness was decreased.

Retention Performance of Nanocoated GCC with Positive Charge (양이온성으로 표면 개질된 nanocoated GCC의 보류 성능)

  • Lee, Jegon;Sim, Kyujeong;Lee, Hak Lae;Youn, Hye Jung
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.45 no.5
    • /
    • pp.14-22
    • /
    • 2013
  • In this study, we investigated retention characteristics of nanocoated GCC that was positively modified by Layer-by-Layer (LbL) multilayering process. Three layers were formed onto GCC particles with poly-DADMAC/PSS/poly-DADMAC (PD3) and C-starch/A-PAM/C-starch (CS3) systems, respectively. Untreated GCC, PD3 GCC (strongly positive charge) and CS3 GCC (weekly positive charge) were retained on pulp fibers under single retention system or microparticle retention system conditions. In single retention system, PD3 particles were not affected by cationic retention aid due to their strong positive charge, whereas CS3 particles reacted with cationic retention aid due to anionic sites on the surface of the weekly positive particles. In a microparticle retention system, positively modified GCC (PD3 and CS3) showed higher retention level than untreated GCC at the same dosage of retention aid. The cationic surface of GCC particles were more reacted with bentonite so the deposition onto pulp fibers was improved. In addition, the retention level of nanocoated GCC was increased with maintaining good formation.

Growth of flounder larvae, Paralichthys olivaceus using enriched rotifer fed with artificial microparticle diets

  • Cho, Kyung-Jin;Kim, Mi-Ryung;Park, Heum-Gi;Lim, Young Soo;Ra, Chae Hun;Kim, Sung-Koo
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.6 no.2
    • /
    • pp.123-130
    • /
    • 2014
  • Three types of artificial microparticle diets were developed for rotifer (Brachionus plicatilis) enrichment. The efficacies of enrichment with the artificial diets were evaluated and compared to those with commercial enrichment diets on the growth and survival of flounder larvae. Total lipid content was highest in the rotifer enriched with oil capsule (40.5% in dry weight). The n-3 highly unsaturated fatty acid (n-3 HUFA) content was also highest in the rotifer fed with oil capsule (7.08% in dry weight). The flounder larvae fed on the rotifer enriched with oil capsule showed the highest growth compared to those fed on any other enriched rotifer (P<0.05). The survival ratio of flounder larvae fed on the rotifers enriched with oil capsule and emulsion oil were higher than those fed on any other enriched rotifer (P<0.05). From the feeding study, the growth and survival of flounder larvae were enhanced by feeding rotifer enriched with oil capsule compared to rotifer enriched with any other diets. The rotifer fed on oil capsule containing high contents of n-3 HUFA. Therefore, a significant relationship between the growth and survival of flounder larvae and the n-3 HUFA content of rotifer could be obtained.

Fabrication of Porous Silk Fibroin Microparticles by Electrohydrodynamic Spraying (전기분사법에 의한 다공성 실크 피브로인 미세입자의 제조)

  • Kim, Moo Kon;Lee, Ki Hoon
    • Polymer(Korea)
    • /
    • v.38 no.1
    • /
    • pp.98-102
    • /
    • 2014
  • Nowadays, silk fibroin receives a lot of attention as novel natural biomaterials due to its excellent biocompatibility and biodegradability. Electrohydrodynamic spraying (EHDS) is one of the method for the preparation of micro or nanoparticles by applying high voltage to the polymer solution. In this research, we fabricated silk fibroin porous microparticles by electrohydrodynamic spraying. Poly(ethylene glycol) (PEG) was added to the fibroin solution to give pores to silk fibroin microparticles. By the addition of PEG, the microparticle size was decreased despite of the decrease in conductivity and the increase of viscosity of the spraying solution. It seems that the immiscibility of silk fibroin and PEG affected much more to the microparticle size than the conductivity and viscosity. Immersing the as-sprayed microparticles into the water removed the phase-separated PEG, and finally, porous silk fibroin microparticles were prepared. The porous silk fibroin microparticles are expected to be applied as drug carriers in drug delivery or cell carriers in tissue engineering.