• Title/Summary/Keyword: Micromachining technology

Search Result 232, Processing Time 0.039 seconds

Technology Development of Micro Channel Fabrication using UV Laser Micromachining (UV 레이저 마이크로머시닝을 이용한 마이크로 채널 제작기술개발)

  • Yang S. B.;Chang W. S.;Kim J. G.;Shin B. S.;Jeon B. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.237-240
    • /
    • 2004
  • In this study, we have developed a new $UV(\lambda=355nm)$ laser micromachining technology by direct ablation method without masks. This technology allows that 3D micro parts can be fabricated rapidly and efficiently with a low price. And it has a benefit of reducing fabricating process simply. Due to micro parts' fabrication, such technologies need the control of XYZ stages with high precision, the design of optical devices to maintain micron spot sizes of laser beam and the control technology of laser focus. Also, we have fabricated a micro-channel through the developed laser micromachining technology and verified it through the results.

  • PDF

Micro Channel Fabrication Technology Using UV Laser Micromachining (UV 레이저 마이크로머시닝을 이용한 마이크로 채널 제작기술)

  • 양성빈;장원석;김재구;신보성;전병희
    • Transactions of Materials Processing
    • /
    • v.13 no.3
    • /
    • pp.216-224
    • /
    • 2004
  • In this study, we have developed a new UV$({\lambda}=355nm)$ laser micromachining technology by direct ablation method without masks. This technology allows that 3D micro parts can be fabricated rapidly and efficiently with a low price. And it has a benefit of reducing fabricating process simply. Due to micro parts' fabrication, such technologies need the control of XYZ stages with high precision, the design of optical devices to maintain micron spot sizes of laser beam and the control technology of laser focus. The developed laser manufacturing process for laser micromachining is that, after extracting coordinates of shape data from CAD model data, a beam path considering manufacturing features of laser beam is created by using genetic algorithm. This generated manufacturing process is sent to stage controller. In order to improve the surface quality of micro parts, we have carried out experiments on iteration manufacturing and beam step-over by using a minimum focus size. Moreover, we have fabricated a micro-channel through the developed laser micromachining technology and verified it through the results.

Miniaturized gyroscopes using micromachining technology (마이크로머시닝 기술을 이용한 초소형 자이로센서의 연구동향)

  • Han, S.O.;Pak, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1971-1973
    • /
    • 1996
  • In this paper various types of gyroscope fabricated by micromachining technologies were reviewed. Four common types of gyroscope reported in the past few years are beam, tuning fork, gimbal, and vibrating shell structure made by surface micromachining using sacrificial layer, bulk micromachining using RIE, or electroplating method. In the study of these new gyroscopes, the fabrication methods, advantages and disadvantages of each structure were examined as well as the direction of development in the future.

  • PDF

Silicon Micromachining Technology and Industrial MEMS Applications (실리콘 마이크로머시닝 기술과 산업용 MEMS)

  • 조영호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.7
    • /
    • pp.52-58
    • /
    • 2000
  • 최근 첨단 미세가공기술로 주목을 받고 있는 실리콘 마이크로머시닝 기술과 이를 기반으로 한 산업용 MEMS 개발현황을 소개한다. 전반부에서는 마이크로머시닝 기술의 종류를 소개하고 각각의 기술에 대해 기술근원, 미세가공원리와 기본 가공공정을 간략히 요약한 후 기전 집적형태의 마이크로머신과의 연계성을 고려한 시스템적인 측면에서의 기술특성을 상호 비교한다. 또한 가공의 양산성, 재현성, 조립성 측면에서 마이크로머시닝의 가공성을 조명함과 동시에 향후 발전방향을 전망한다.(중략)

  • PDF

Deformation analysis of Tool and Tool holder for Micromachining by FEM (FEM을 이용한 Micromachining용 Tool 및 Tool holder의 변형해석)

  • Min, Kyung-Tak;Jang, Ho-Su
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.1
    • /
    • pp.87-92
    • /
    • 2010
  • Micromachining technology using a ultra-precision micromachining system is widely applied in the fields of optics, biotechnology and analytical chemistry, etc. specially in microfabrication of fresnel lens, light guide panels of TFT-LED and PDP ribs with micro-patterns, machining errors have an effect on the performance of those products. The deflection of tool and tool holder is known to be one of the very important factors that is due to machining errors in micromachining. The deflections of diamond tool and tool holder used in micro-grooving are analysed by FEM. We analysed by FEM. With an linearity valuation of FEM, deflection of tool and tool holder is calculated by using the data of cutting force which is acquired from micro-V groove machining experiments in micromachining system.

A Study on Water Droplet Lens Effect of UV Laser Micromachining Process (UV 레이저 미세 가공공정에서의 물 액적 렌즈 효과에 관한 연구)

  • Shin, Bo-Sung;Lee, Jung-Han
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.5
    • /
    • pp.773-777
    • /
    • 2012
  • Recently UV laser micromachining processes is widely introduced to meet the needs of advanced components of IT, BT and ET industries. Due to the characteristics of non-contact and high-speed laser processing, UV laser micromachining is applied to manufacture very thin substrate such as polymer, metals and composite. These minimum line width obtained by UV laser micromachining is generally determined from laser wavelength, optical lens and its numerical aperture. In this paper we will show the lens effect of water droplet on the surface of workpiece to reduce the line width when UV laser light is irradiated and focused through the water droplet. Because of the refraction effect generated by the semi-spherical or spherical shape of water droplet, we can find smaller line width. And water droplet could not only protect thermal deformation, but also carry away burr around micro dent. Firstly fundamental theory of minimum line width was derived from relationship between the geometry of water droplet and laser light trace, and then experimental and simulation results will be finally compared to verify the effectiveness of water droplet lens effect of UV laser micromachining process.

A SOI Technology for Micromachining (마이크로머신을 위한 SOI 기술)

  • 정귀상
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.05a
    • /
    • pp.145-146
    • /
    • 1994
  • A SOI technology is promising for micromachining: high temperature operation, the fabrication easiness of sophisticated and 3D microstructures, radiation hardness, integrated sensors etc. This paper describes reviews of SOI technologies, and their applications microsensors and microactuators

  • PDF

Pyroelectric infrared microsensors made by micromachining technology (마이크로 가공 기술을 이용한 강유전체 박막 초전형 적외선 센서)

  • 최준임
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.4
    • /
    • pp.93-100
    • /
    • 1998
  • Pyoelectric infrared detectors based on La-modified PbTiO3 (PLT) thin films have been fabricated by RF magnetron sputtering and micromachining technology. The detectors form Pb$_{1-x}$ La$_{x}$Ti$_{1-x}$ O$_{3}$ (x=0.05) thin film ferroelectric capacitors epitaxially grown by RF magnetron sputtering on Pt/MgO (100) substrate. The sputtered PLT thin film exhibits highly c-axis oriented crystal struture that no poling trealization for sensing applications is required. This is an essential factor to increase the yield for realization of an infrared image sensor. Micromachining technology is used to lower the thermal mass of the detector by giving maximum sensor efficiency. Polyimide is coated on top of the sensing elements to support the fragile structure and the backside of the MgO substrate is selectively eteched to reduce the heat loss. The sensing element exhibited a very high detectivity D* of 8.5*10$^{8}$ cm..root.Hz/W at room temperature and it is about 100 times higher than the case of micromachining technology is not used. a sensing system that detects the position as well as the existence of a human body is realized using the array sensor.sor.

  • PDF

Micromachining Technologies and its application to MEMS Optical Switch (마이크로머시닝 기술과 MEMS 광스위치 응용)

  • 이종현
    • Transactions of Materials Processing
    • /
    • v.11 no.2
    • /
    • pp.103-107
    • /
    • 2002
  • With the great demand for WDM (Wavelength Division Multiplexing) optical communications, optical switches are expected to become one of the dominant components in future networks. Conventional mechanical switches suffer from poor reliability and large size; however, many micromachined optical switches with moving mirrors have been proposed for high scale OXC (Optical Crossconnect) or ADM (Add/Drop Multiplex) because of the low power consumption and high reliability of these switches. In this paper, we introduce the technological trends of optical switches using MEMS, related micromachining technologies and their characteristics.