• Title/Summary/Keyword: Microhardness Test

Search Result 188, Processing Time 0.032 seconds

Effect of carbonated water manufactured by a soda carbonator on etched or sealed enamel

  • Ryu, Hyo-kyung;Kim, Yong-do;Heo, Sung-su;Kim, Sang-cheol
    • The korean journal of orthodontics
    • /
    • v.48 no.1
    • /
    • pp.48-56
    • /
    • 2018
  • Objective: The purpose of this study was to determine the effects of carbonated water on etched or sealed enamel according to the carbonation level and the presence of calcium ions. Methods: Carbonated water with different carbonation levels was manufactured by a soda carbonator. Seventy-five premolar teeth were randomly divided into a control group and 4 experimental groups in accordance with the carbonation level and the presence of calcium ions in the test solutions. After specimen preparation of the Unexposed, Etched, and Sealed enamel subgroups, all the specimens were submerged in each test solution for 15 minutes three times a day during 7 days. Microhardness tests on the Unexposed and Etched enamel subgroups were performed with 10 specimens from each group. Scanning electron microscopy (SEM) tests on the Unexposed, Etched, and Sealed enamel subgroups were performed with 5 specimens from each group. Microhardness changes in different groups were statistically compared using paired t-tests, the Wilcoxon signed rank test, and the Kruskal-Wallis test. Results: The microhardness changes were significantly different between the groups (p = 0.000). The microhardness changes in all experimental groups except Group 3 (low-level carbonated water with calcium ions) were significantly greater than those in the Control group. SEM showed that etched areas of the specimen were affected by carbonated water and the magnitude of destruction varied between groups. Adhesive material was partially removed in groups exposed to carbonated water. Conclusions: Carbonated water has negative effects on etched or sealed enamel, resulting in decreased microhardness and removal of the adhesive material.

The effect of various surface coatings on microleakage and microhardness of light-cured glass ionomer restoration (수종 표면 보호재의 도포가 광중합형 유리 아이오너머 수복물의 변연 누출 및 미세 경도에 미치는 영향)

  • Kim, Gi-Seob;Kim, Yong-Kee
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.24 no.3
    • /
    • pp.495-510
    • /
    • 1997
  • The purpose of this study was to evaluate the efficacy of several surface coating agents in preventing microleakage and increasing microhardness of light-cured glass ionomer restoration. 50 and 25 sound molar teeth were used for the microleakage test and microhardness test respectively. Data were analyzed statistically using Kruskal-Wallis and/or Mann-Whitney test. The results of the present study were as follows: 1. The effect of surface coating in reducing microleakage was proven only at the gingival margin of restorations with statistical significance(p<.05). 2. The distribution of microleakage score at gingival margin was shown to be better than that of occlusal margin in general but with no statistically significant differences(p>.05). 3. No statistically significant differences in microhardness could be found between groups (p>.05) regardless of depth of measurement. 4. Under the present experimental conditions, the types or application of surface coating agents did not impose any significant effect on microhardness of glass ionomer restorative material whereas the protective effect of surface coating in reducing microleakage was partly proven.

  • PDF

Effect of different denture cleansers on surface roughness and microhardness of artificial denture teeth

  • Yuzugullu, Bulem;Acar, Ozlem;Cetinsahin, Cem;Celik, Cigdem
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.5
    • /
    • pp.333-338
    • /
    • 2016
  • PURPOSE. The aim of this study was to compare the effects of different denture cleansers on the surface roughness and microhardness of various types of posterior denture teeth. MATERIALS AND METHODS. 168 artificial tooth specimens were divided into the following four subgroups (n=42): SR Orthotyp PE (polymethylmethacrylate); SR Orthosit PE (Isosit); SR Postaris DCL (double cross-linked); and SR Phonares II (nanohybrid composite). The specimens were further divided according to the type of the denture cleanser (Corega Tabs (sodium perborate), sodium hypochlorite (NaOCl), and distilled water (control) (n=14)) and immersed in the cleanser to simulate a 180-day immersion period, after which the surface roughness and microhardness were tested. The data were analyzed using the Kruskal-Wallis test, Conover's nonparametric multiple comparison test, and Spearman's rank correlation analysis (P<.05). RESULTS. A comparison among the denture cleanser groups showed that NaOCl caused significantly higher roughness values on SR Orthotyp PE specimens when compared with the other artificial teeth (P<.001). Furthermore, Corega Tabs resulted in higher microhardness values in SR Orthotyp PE specimens than distilled water and NaOCl (P<.005). The microhardness values decreased significantly from distilled water, NaOCl, to Corega Tabs for SR Orthosit PE specimens (P<.001). SR Postaris DLC specimens showed increased microhardness when immersed in distilled water or NaOCl when compared with immersion in Corega Tabs (P<.003). No correlation was found between surface roughness and microhardness (r=0.104, P=.178). CONCLUSION. NaOCl and Corega Tabs affected the surface roughness and microhardness of all artificial denture teeth except for the new generation nanohybrid composite teeth.

Effect of resin thickness on the microhardness and optical properties of bulk-fill resin composites

  • Kim, Eun-Ha;Jung, Kyoung-Hwa;Son, Sung-Ae;Hur, Bock;Kwon, Yong-Hoon;Park, Jeong-Kil
    • Restorative Dentistry and Endodontics
    • /
    • v.40 no.2
    • /
    • pp.128-135
    • /
    • 2015
  • Objectives: This study evaluated the effects of the resin thickness on the microhardness and optical properties of bulk-fill resin composites. Materials and Methods: Four bulk-fill (Venus Bulk Fill, Heraeus Kulzer; SDR, Dentsply Caulk; Tetric N-Ceram Bulk Fill, Ivoclar vivadent; SonicFill, Kerr) and two regular resin composites (Charisma flow, Heraeus Kulzer; Tetric N-Ceram, Ivoclar vivadent) were used. Sixty acrylic cylindrical molds were prepared for each thickness (2, 3 and 4 mm). The molds were divided into six groups for resin composites. The microhardness was measured on the top and bottom surfaces, and the colors were measured using Commission Internationale d'Eclairage (CIE) $L^*a^*b^*$ system. Color differences according to the thickness and translucency parameters and the correlations between the microhardness and translucency parameter were analyzed. The microhardness and color differences were analyzed by ANOVA and Scheffe's post hoc test, and a student t-test, respectively. The level of significance was set to ${\alpha}=0.05$. Results: The microhardness decreased with increasing resin thickness. The bulk-fill resin composites showed a bottom/top hardness ratio of almost 80% or more in 4 mm thick specimens. The highest translucency parameter was observed in Venus Bulk Fill. All resin composites used in this study except for Venus Bulk Fill showed linear correlations between the microhardness and translucency parameter according to the thickness. Conclusions: Within the limitations of this study, the bulk-fill resin composites used in this study can be placed and cured properly in the 4 mm bulk.

Effects of Calamansi Soju and Other Alcoholic Beverages on Resin Restorations

  • Jeong, Moon-Jin;Heo, Kyungwon;Lee, Myoung-Hwa;Jeong, Myeong-Ju;Lim, Do-Seon
    • Journal of dental hygiene science
    • /
    • v.21 no.4
    • /
    • pp.251-259
    • /
    • 2021
  • Background: The purpose of this study was to investigate the effects of commercially available calamansi soju and other alcoholic beverages on the microhardness and erosion of resin restorations. Methods: In this study, we evaluated the effects of Calamansi soju, Chamisul fresh, Cass fresh, and Gancia Moscato D'asti on resin restorations. Jeju Samdasoo and Coca-Cola were used as negative and positive controls, respectively. Specimens to be immersed in the beverages were manufactured using composite resin according to the product instructions. In each group, the surface microhardness was measured using a surface microhardness instrument before and after immersion for 5, 15, 30, and 60 minutes. The pattern of change in the surface of the composite resin was observed under a scanning electron microscope (SEM). Paired t-tests, one-way ANOVA, and repeated measures ANOVA were performed to compare the surface microhardness of the specimens, and the Tukey test was used as a post hoc test. Results: The pH of all beverages except Jeju Samdasoo was <5.5, which is the critical pH that can induce erosion. The difference in surface microhardness of the composite resin before and after immersion for 60 minutes was significant in all groups. In particular, the largest change in surface microhardness was observed in the calamansi soju group. In the SEM analysis, loss of composite resin was observed in all groups except the Jeju Samdasoo group, and rough surfaces with pores of various sizes were observed. Conclusion: In this study, all beverages except Jeju Samdasoo decreased the microhardness of the composite resin surface, and it was confirmed that calamansi soju had the greatest change.

Effect of Ultrasound on the Mechanical Properties of Electrodeposited Ni-SiC Nano Composite

  • Gyawali, Gobinda;Lee, Su-Wan;U, Dong-Jin;Lee, Han-Yong;Jo, Seong-Hun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.26.1-26.1
    • /
    • 2010
  • Ni-SiC nano composite coatings were fabricated using electrodeposition technique with the aid of ultrasound. The properties of the nano composite were investigated by using SEM, XRD, Wear test and Vicker's microhardness test. The results demonstrated that the microhardness of composite coatings under ultrasonic condition was improved significantly as compared to conventional electrodeposition techniques without ultrasound. The nano particles were found to be distributed homogeneously with reduced agglomeration. The synergistic combination of superior wear resistance and improved microhardness was found in ultrasonicated conditions to the Ni-SiC nano composite coatings.

  • PDF

Effect of acidic solutions on the microhardness of dentin and set OrthoMTA and their cytotoxicity on murine macrophage

  • Oh, Soram;Perinpanayagam, Hiran;Lee, Yoon;Kum, Jae-Won;Yoo, Yeon-Jee;Lim, Sang-Min;Chang, Seok Woo;Shon, Won-Jun;Lee, Woocheol;Baek, Seung-Ho;Kum, Kee-Yeon
    • Restorative Dentistry and Endodontics
    • /
    • v.41 no.1
    • /
    • pp.12-21
    • /
    • 2016
  • Objectives: To evaluate the effects of three acids on the microhardness of set mineral trioxide aggregate (MTA) and root dentin, and cytotoxicity on murine macrophage. Materials and Methods: OrthoMTA (BioMTA) was mixed and packed into the human root dentin blocks of 1.5 mm diameter and 5 mm height. Four groups, each of ten roots, were exposed to 10% citric acid (CA), 5% glycolic acid (GA), 17% ethylenediaminetetraacetic acid (EDTA), and saline for five minutes after setting of the OrthoMTA. Vickers surface microhardness of set MTA and dentin was measured before and after exposure to solutions, and compared between groups using one-way ANOVA with Tukey test. The microhardness value of each group was analyzed using student t test. Acid-treated OrthoMTA and dentin was examined by scanning electron microscope (SEM). Cell viability of tested solutions was assessed using WST-8 assay and murine macrophage. Results: Three test solutions reduced microhardness of dentin. 17% EDTA demonstrated severe dentinal erosion, significantly reduced the dentinal microhardness compared to 10% CA (p = 0.034) or 5% GA (p = 0.006). 10% CA or 5% GA significantly reduced the surface microhardness of set MTA compared to 17% EDTA and saline (p < 0.001). Acid-treated OrthoMTA demonstrated microporous structure with destruction of globular crystal. EDTA exhibited significantly more cellular toxicity than the other acidic solutions at diluted concentrations (0.2, 0.5, 1.0%). Conclusions: Tested acidic solutions reduced microhardness of root dentin. Five minute's application of 10% CA and 5% GA significantly reduced the microhardness of set OrthoMTA with lower cellular cytotoxicity compared to 17% EDTA.

A Study on the strengthening of titania ceramic coating layer on the steel substrate (티타니아 세라믹 熔射皮膜의 强度向上에 관한 硏究)

  • 김영식
    • Journal of Welding and Joining
    • /
    • v.10 no.4
    • /
    • pp.181-189
    • /
    • 1992
  • The purpose of this investigation is to examine the effects of the strengthening treatments on the mechanical properties of the flame-sprayed titania ceramic coating layer. The strengthening treatments for flame sprayed specimens were carried out in 12 different conditions in vaccum furance. The mechanical properties such as microhardness, thermal shock resistance, adhesive strength and erosion resistance were tested for the sprayed specimens after strengthening treatments. And it was clear that the mechanical properties of coating layer were much improved by the strengthening treatments. The results obtained are summarized as follows; 1. It was shown that the metallurgical bond was formed between substrate and coating layer by the strengthening treatments and that thermal shock resistance and adhesive strength were remarkably raised. 2. Microhardness of coating lay was considerably increased by the strengthening treatments. 3. Erosion resistance and porosity of coating layer were slightly improved by the strengthening treatments.

  • PDF

A STUDY ON THE ENAMEL EROSION CAUSED BY ACIDIC BEVERAGE AND REHARDENING BY INTRAORAL EXPOSURE (산성 음료수에 의한 법랑질 침식과 구강내 재경화에 관한 연구)

  • Kim, Jung-Wook
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.25 no.2
    • /
    • pp.312-322
    • /
    • 1998
  • There are many concerns about the erosive effect of acidic beverage. In this study, the erosive effect of bovine enamel caused by $Pepsi-Cola^{(R)}$(pH 2.41) and rehardening effect by intraoral exposure were determined by microhardness test and SEM. The bovine enamel specimen was imbedded in 100ml $Pepsi-Cola^{(R)}$ during 5 minutes and exposed to the intraoral environment with removable resin plate. The microhardness test was performed after 1 hr, 24 hrs, and 48 hrs. The results obtained from this study can be summarized as follows ; 1. The microhardness value was significantly (p<0.05) reduced by cola beverage, and significantly (p<0.05) increased after 1 hr and 24 hrs respectively. 2. The difference in the microhardness between 24 hrs group and 48 hrs group was not significant (p>0.05) and microhardness value of 48 hrs group was significantly less than that of initial group (p<0.05). 3. The erosive effect of cola beverage and remineralization effect by intraoral exposure were visualized by the SEM photo. But, the enamel surfaces did not return to their original state.

  • PDF

Characteristics of polymerization in nanofiller-containing composite resins (나노필러를 포함하고 있는 복합레진의 중합특성)

  • Lee, Hee-Kyung
    • Journal of Technologic Dentistry
    • /
    • v.29 no.2
    • /
    • pp.9-15
    • /
    • 2007
  • As the development of nanotechnology, the use of composite resins which containing nanofillers becomes popular. The purpose of this study was to test the degree of polymerization of nanofillercontaining composite resins. For the study, three different nanofiller-containing composite resins and two different light-curing units were used. To evaluate the degree of polymerization, the maximum polymerization shrinkage taking place during the light curing, and the microhardness, after the light curing, were measured. As results, two light-curing units exhibited a similar emission spectrum to that of the included photoinitiator, camphorquinone. The only difference between the light-curing units were the width of the emission spectrum. Three different composite resins showed different microhardness values. Among them, Grandio showed the greatest microhardness value. However, there was less microhardness difference on the top and bottom surfaces due to the difference of the light-curing units. The maximum polymerization shrinkage values were also similar in the tested specimens regardless of the difference of the light-curing units. However, Grandio showed the least polymerization shrinkage. According to the manufacturers' data, Grandio showed the highest filler content(vol%).

  • PDF