• 제목/요약/키워드: Microglial cell

검색결과 133건 처리시간 0.022초

Inhibitory Effects of Jojoongikgi-tang on the Secretion of PGE2 and NO and Cytokines in LPS-stimulated BV2 Microglial Cells

  • Lee, Jun-Moon;Lyu, Sun-Ae;Lee, Seung-Yeon;Kim, Bo-Kyung;Ko, Woo-Shin
    • 대한한방소아과학회지
    • /
    • 제21권2호
    • /
    • pp.97-107
    • /
    • 2007
  • Objectives This experiment is about Jojoongikgi-tang(JIT) exerts anti-inflammatory effects in BV2 microglial cells, and the effect of JIT on Nitric oxide(NO) production in lipopolysaccharide(LPS)-stimulated BV2 microglial cells were also demonstrated. Methods To investigate the anti-inflammatory effects of JIT, NO production, expression level of iNOS mRNA, PGE2 synthesis, expression COX-2 mRNA, cell viability, $TNF-{\alpha}$ mRNA expression were examined. Results The expression level of inducible nitric oxide synthase(iNOS) was decreased by JIT, and the production of Prostaglandin E2(PGE2) and the expression of Cox-2 mRNA also were inhibited by JIT. Proinflammatory mediators, such as $TNF-{\alpha}$, $IL-1{\beta}$, IL-12, were inhibited by JIT in a dose-dependent manner. Conclusions JIT have anti-inflammatory effects in BV2 microglial cells and could be used in inflammatory disease.

  • PDF

NSA9, a human prothrombin kringle-2-derived peptide, acts as an inhibitor of kringle-2-induced activation in EOC2 microglia

  • Kim, Ji-Yeon;Kim, Tae-Hyong;Kim, Soung-Soo
    • BMB Reports
    • /
    • 제42권6호
    • /
    • pp.380-386
    • /
    • 2009
  • In neurodegenerative diseases, such as Alzheimer' and Parkinson', microglial cell activation is thought to contribute to CNS injury by producing neurotoxic compounds. Prothrombin and kringle-2 increase levels of NO and the mRNA expression of iNOS, IL-1$\beta$, and TNF-$\alpha$ in microglial cells. In contrast, the human prothrombin kringle-2 derived peptide NSA9 inhibits NO release and the production of pro-inflammatory cytokines such as IL-1$\beta$, TNF-$\alpha$, and IL-6 in LPS-activated EOC2 microglia. In this study, we investigated the anti-inflammatory effects of NSA9 in human prothrombin- and kringle-2-stimulated EOC2 microglia. Treatment with 20-100 ${\mu}M$ of NSA9 attenuated both prothrombin- and kringle-2-induced microglial activation. NO production induced by MAPKs and NF-$\kappa$B was similarly reduced by inhibitors of ERK (PD98059), p38 (SB203580), NF-$\kappa$B (N-acetylcysteine), and NSA9. These results suggest that NSA9 acts independently as an inhibitor of microglial activation and that its effects in EOC2 microglia are not influenced by the presence of kringle-2.

Effect of acupuncture on short-term memory and apoptosis after transient cerebral ischemia in gerbils

  • Choi, In-Ho;Lim, Hyung-Ho
    • 대한한의학회지
    • /
    • 제39권4호
    • /
    • pp.1-15
    • /
    • 2018
  • Objectives: Cerebral ischemia results from a variety of causes that cerebral blood flow is reduced due to a transient or permanent occlusion of cerebral arteries. Reactive astrocytes and microglial activation plays an important role in the neuronal cell death during ischemic insult. Acupunctural treatment is effective for symptom improvement in cerebrovascular accident, including cerebral ischemia. Methods: In the present study, the effects of acupuncture at the ST40 acupoint on short-term memory and apoptosis in the hippocampal CA1 region following transient global cerebral ischemia were investigated using gerbils. Transient global ischemia was induced by occlusion of both common carotid arteries with aneurysm clips for 5 min. Acupuncture stimulation was conducted once daily for 7 consecutive days, starting one day after surgery. Results: In the present results, ischemia induction deteriorated short term memory, increased apoptosis, and induced reactive astrocyte and microglial activation. Acupuncture at ST40 acupoint ameliorated ischemia-induced short-term memory impairment by suppressing apoptosis in the hippocampus through down-regulation of reactive astrocytes and microglial activation. Conclusion: The present study suggests that acupuncture at the ST40 acupoint can be used for treatment of patients with cerebral stroke.

Sesamin attenuates neuronal damage through inhibition of microglial activation following global cerebral ischemia in rats

  • Kong, Minjung;Hong, Sung In
    • 대한본초학회지
    • /
    • 제28권2호
    • /
    • pp.1-7
    • /
    • 2013
  • Objectives : Sesamin, a major lignan in sesame seeds, has been reported to have neuroprotective effects against in vitro ischemia and in vivo MCAo-reperfusion cerebral ischemia model, however, there is no reports in an in vivo global cerebral ischemia model. The purpose of the study was to investigate the neuroprotective effect of sesamin in global cerebral ischemia induced by four-vessel occlusion (4-VO) in rats through inhibition of microglial activation in this model. Methods : The neuroprotective effects were investigated using a 10 min of 4-VO ischemia rat model by measuring intact pyramidal neurons in the CA1 region of the hippocampus using Nissle staining. The antiinflammatory or reducing neurotoxicity effect was investigated using immunohistochemisty, RT-PCR and western blot analysis of inflammatory or neurotoxic mediators. Results : Intraperitoneal injection of sesamin at doses of 0.3, 1.0, 3.0, and 10.0 mg/kg at 0 min and 90 min after ischemia conferred 26.6%, 30.1%, 42.5%, and 30.5% neuroprotection, respectively, compared to the vehicle-treated control group. A 3.0 mg/kg dose of sesamin inhibited microglia activation and consequently, cyclooxygenase-2, inducible nitric oxide, and interleukine-$1{\beta}$ expressions at 48 h after reperfusion. Conclusions : Sesamin protects neuronal cell death through inhibition of microglial activation or the production of neurotoxic metabolites and proinflammatory mediators by microglia such as COX-2, iNOS and IL-$1{\beta}$ in global cerebral ischemia.

BV2 microglial cells에서 ERK를 통한 고삼의 Tnf alpha 생성 억제효과 (ERK mediated suppressive effects of Sophora flavescens on Tnf alpha production in BV2 microglial cells)

  • 김수철;한미영;박혜정;정경희
    • 대한본초학회지
    • /
    • 제22권2호
    • /
    • pp.147-153
    • /
    • 2007
  • Objectives : Sophora flavescens (SF) is widely used in traditional herbal medicine in Korea and is well recognized for its anti-inflammatory effect. However, its effect on Tumornecrosis factor alpha (Tnf) production in BV2 microglial cell is not yet known. Methods : We investigated the effect of SF on the production and expression of Tnf, a well known inflammatory mediator, in lipopolysaccaride (LPS)-activated BV2 microglial cells. Results : The LPS-induced Tnf production was markedly reduced by treatment with SF (50 ${\mu}g/ml$). In reverse transcription polymerase chain reaction (RT-PCR) analysis, SF suppressed the LPS activated expression of Tnf mRNA. In addition, Western blot analysis confirmed that SF suppressed the expression of Tnf. Sophora flavescens also inhibited the LPS-induced phosphylation of extracellular signal-regulated kinases (ERK), which mediate the Tnfproduction signaling pathway whereas LPS-induced phosphylation of p38 mitogen activated protein kinase (p38 MAPK), and c-Jun NH2-terminal kinases (JNK) was not inhibited by SF, which implies that SF suppresses LPS-induced Tnf production via the ERK mediated pathway. Conclusion : Taken together, these findings indicated that SF inhibits LPS-induce Tnf production, and that this inhibitory effect is mediated via the ERK pathway.

  • PDF

뇌신경소교세포(腦神經小膠細胞)에서 생강 헥산 분획물의 염증매개물질 생성(生成) 억제효과(抑制效果) (Hexane Fraction of Zingiberis Rhizoma Crudus Extract Inhibits the Production of Nitric Oxide and Pro-inflammatory Cytokines in LPS-stimulated BV2 Microglial Cells)

  • 정환용;주예진;정혜미;신우진;서운교
    • 대한한의학회지
    • /
    • 제30권2호
    • /
    • pp.17-29
    • /
    • 2009
  • Objectives: The present study is focused on the inhibitory effect of the rhizome hexane fraction extract of Zingiberis Rhizoma Crudus (ginger hexan extract; GHE) on the production of inflammatory mediators such as NO, $PGE_2$, and proinflammatory cytokines in lipopolysaccharide (LPS)-stimulated BV2 cells, a mouse microglial cell line. Methods: We separated the hexane fraction from Zingiberis Rhizoma Crudus's methanol extract. The inhibitory and anti-inflammatory effect of GHE was examined on microglial activation. Results: GHE significantly inhibited the excessive production of NO, $PGE_2$, TNF-${\alpha}$, and IL-1${\beta}$ in LPS-stimulated BV2 cells. In addition, GHE attenuated the mRNA expressions and protein levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and proinflammatory cytokines. Conclusion: The anti-inflammatory properties of GHE may make it useful as a therapeutic candidate for the treatment of human neurodegenerative diseases.

  • PDF

Comparison of Inhibitory Potency of Various Antioxidants on the Activation of BV2 Microglial Cell Lines Induced by LPS

  • Kong, Pil-Jae;Park, Jong-Ik;Kwon, Oh-Yoon;Han, Yoon-Hee;Kim, Soo-Young;Lee, Su-Nam;Son, Hee-Jeong;Kim, Sung-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제11권1호
    • /
    • pp.9-13
    • /
    • 2007
  • Antioxidant properties have been proposed as a mechanism for the putative anti-inflammatory effects of phenolic compounds. To reveal the relationship between antioxidant activity and anti-inflammatory effects of various antioxidants, we measured 1, 1-diphenyl-2-picryhydrazyl(DPPH)-reducing activity and examined the inhibitory effects on LPS-induced inflammation-related gene expression in the BV2 microglial cell line. Lipopolysaccharide(LPS)(0.2 ${\mu}g/ml$) was used with or without antioxidants to treat cells, and the regulation of iNOS and cytokine gene expression was monitored using an RNase protection assay(RPA). Although, all tested antioxidants had similar DPPH-reducing activity and inhibited nitrite production, but the curcuminoid antioxidants(ferulic acid, caffeic acid, and curcumin) inhibited LPS-induced gene expression(iNOS, $TNF-\alpha,\;IL-1{\beta}$, IL-6, and IL-1 Ra) in a concentration-dependent manner. Other tested antioxidants did not exhibit the same effects; N-acetylcysteine(NAC) only began to suppress $IL-1{\beta}$ gene expression just below the concentration at which cytotoxicity occurred. Moreover, the antioxidant potency of curcuminoids appeared to have no correlation with anti-inflammatory potency. Only curcumin could inhibit LPS-induced microglial activation at a micromolar level. These data suggest that curcumin may be a safe antioxidant possessing anti-inflammatory activity.

Anti-inflammatory effects of N-cyclooctyl-5-methylthiazol-2-amine hydrobromide on lipopolysaccharide-induced inflammatory response through attenuation of NLRP3 activation in microglial cells

  • Kim, Eun-A;Hwang, Kyouk;Kim, Ji-Eun;Ahn, Jee-Yin;Choi, Soo Young;Yang, Seung-Ju;Cho, Sung-Woo
    • BMB Reports
    • /
    • 제54권11호
    • /
    • pp.557-562
    • /
    • 2021
  • Microglial activation is closely associated with neuroinflammatory pathologies. The nucleotide-binding and oligomerization domain-like receptor containing a pyrin domain 3 (NLRP3) inflammasomes are highly organized intracellular sensors of neuronal alarm signaling. NLRP3 inflammasomes activate nuclear factor kappa-B (NF-κB) and reactive oxygen species (ROS), which induce inflammatory responses. Moreover, NLRP3 dysfunction is a common feature of chronic inflammatory diseases. The present study investigated the effect of a novel thiazol derivative, N-cyclooctyl-5-methylthiazol-2-amine hydrobromide (KHG26700), on inflammatory responses in lipopolysaccharide (LPS)-treated BV-2 microglial cells. KHG26700 significantly attenuated the expression of several pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin-1β, and interleukin-6, in these cells, as well as the LPS-induced increases in NLRP3, NF-κB, and phospho-IkBα levels. KHG26700 also suppressed the LPS-induced increases in protein levels of autophagy protein 5 (ATG5), microtubule-associated protein 1 light chain 3 (LC3), and beclin-1, as well as downregulating the LPS-enhanced levels of ROS, lipid peroxidation, and nitric oxide. These results suggest that the anti-inflammatory effects of KHG26700 may be due, at least in part, to the regulation of the NLRP3-mediated signaling pathway during microglial activation.

Efonidipine Inhibits JNK and NF-κB Pathway to Attenuate Inflammation and Cell Migration Induced by Lipopolysaccharide in Microglial Cells

  • Nguyen, Ngoc Minh;Duong, Men Thi Hoai;Nguyen, Phuong Linh;Bui, Bich Phuong;Ahn, Hee-Chul;Cho, Jungsook
    • Biomolecules & Therapeutics
    • /
    • 제30권5호
    • /
    • pp.455-464
    • /
    • 2022
  • Efonidipine, a calcium channel blocker, is widely used for the treatment of hypertension and cardiovascular diseases. In our preliminary study using structure-based virtual screening, efonidipine was identified as a potential inhibitor of c-Jun N-terminal kinase 3 (JNK3). Although its antihypertensive effect is widely known, the role of efonidipine in the central nervous system has remained elusive. The present study investigated the effects of efonidipine on the inflammation and cell migration induced by lipopolysaccharide (LPS) using murine BV2 and human HMC3 microglial cell lines and elucidated signaling molecules mediating its effects. We found that the phosphorylations of JNK and its downstream molecule c-Jun in LPS-treated BV2 cells were declined by efonidipine, confirming the finding from virtual screening. In addition, efonidipine inhibited the LPS-induced production of pro-inflammatory factors, including interleukin-1β (IL-1β) and nitric oxide. Similarly, the IL-1β production in LPS-treated HMC3 cells was also inhibited by efonidipine. Efonidipine markedly impeded cell migration stimulated by LPS in both cells. Furthermore, it inhibited the phosphorylation of inhibitor kappa B, thereby suppressing nuclear translocation of nuclear factor-κB (NF-κB) in LPS-treated BV2 cells. Taken together, efonidipine exerts anti-inflammatory and anti-migratory effects in LPS-treated microglial cells through inhibition of the JNK/NF-κB pathway. These findings imply that efonidipine may be a potential candidate for drug repositioning, with beneficial impacts on brain disorders associated with neuroinflammation.

가감신기환(加減腎氣丸) 제형변화가 염증반응 사이토카인과 기억력감퇴에 미치는 영향 (The Effects of kagamSinKiHwan(KSKH) Hot water extract & ultra-fine Powder on Proinflammatory cytokine of Microglia & Memory Deficit of Amnesia Mice Model)

  • 임현주;정인철
    • 동의신경정신과학회지
    • /
    • 제19권3호
    • /
    • pp.85-100
    • /
    • 2008
  • Objective: This experiment was designed to investigate the effect of the KSKH hot water extract & ultra-fine powder on microglia and memory deficit model. Method: The effects of the KSKH hot water extract on expression of IL-1$\beta$, IL-6, TNF-$\alpha$ mRNA and production of IL-1$\beta$, IL-6, TNF-$\alpha$ in BV2 microglial cell line treated by lipopolysacchaide(LPS) were investigated. The effects of the KSKH hot water extract & ultra-fine-fine powder on the behavior of the memory deficit mice induced by scopolamine and AChE in serum of the memory deficit mice induced by scopolamine were investigated. Results: 1. The KSKH hot water extract suppressed the expression of IL-1$\beta$, IL-6, TNF-$\alpha$ mRNA in BV2 microglial cell line treated by LPS. 2. The KSKH hot water extract suppressed the production of IL-1$\beta$, IL-6, TNF-$\alpha$ in 100$\mu g/m\ell$ concentration of BV2 microglial cell line culture supernatant. 3. The KSKH hot water extract & ultra-fine powder decreased AChE activation significantly in the serum of the memory deficit mice induced by scopolamine. 4. The KSKH hot water extract & ultra-fine powder showed significant effect on memory impairment in the stop-through latency type of Morris water maze test. Conclusions: This experiment shows that the KSKH hot water extract & ultra-fine powder might be effective for the prevention and treatment of amnesia and Alzheimer's disease. Investigation into the clinical use of the KSKH hot water extract & ultra-fine powder for amnesia and Alzheimer's disease is suggested for future research.

  • PDF