• 제목/요약/키워드: Microglia activation

검색결과 147건 처리시간 0.023초

Protective effect of 3-(naphthalen-2-yl(propoxy)methyl)azetidine hydrochloride on hypoxia-induced toxicity by suppressing microglial activation in BV-2 cells

  • Kim, Jiae;Kim, Su-Min;Na, Jung-Min;Hahn, Hoh-Gyu;Cho, Sung-Woo;Yang, Seung-Ju
    • BMB Reports
    • /
    • 제49권12호
    • /
    • pp.687-692
    • /
    • 2016
  • We recently reported the anti-inflammatory effects of 3-(naphthalen-2-yl(propoxy)methyl)azetidine hydrochloride (KHG26792) on the ATP-induced activation of the NFAT and MAPK pathways through the P2X7 receptor in microglia. To further investigate the underlying mechanism of KHG26792, we studied its protective effects on hypoxia-induced toxicity in microglia. The administration of KHG26792 significantly reduced the hypoxia-induced expression and activity of caspase-3 in BV-2 microglial cells. KHG26792 also reduced hypoxia-induced inducible nitric oxide synthase protein expression, which correlated with reduced nitric oxide accumulation. In addition, KHG26792 attenuated hypoxia-induced protein nitration, reactive oxygen species production, and NADPH oxidase activity. These effects were accompanied by the suppression of hypoxia-induced protein expression of hypoxia-inducible factor 1-alpha and NADPH oxidase-2. Although the clinical relevance of our findings remains to be determined, these data results suggest that KHG26792 prevents hypoxia-induced toxicity by suppressing microglial activation.

Role of microglial activation on neuronal excitability in rat substantia gelatinosa

  • Park, Areum;Chun, Sang Woo
    • International Journal of Oral Biology
    • /
    • 제45권4호
    • /
    • pp.225-231
    • /
    • 2020
  • Glial cells, including astrocytes and microglia, interact closely with neurons and modulate pain transmission, particularly under pathological conditions. In this study, we examined the excitability of substantia gelatinosa (SG) neurons of the spinal dorsal horn using a patch clamp recording to investigate the roles of microglial activation in the nociceptive processes of rats. We used xanthine/xanthine oxidase (X/XO), a generator of superoxide anion (O2·-), to induce a pathological pain condition. X/XO treatment induced an inward current and membrane depolarization. The inward current was significantly inhibited by minocycline, a microglial inhibitor, and fluorocitrate, an astrocyte inhibitor. To examine whether toll-like receptor 4 (TLR4) in microglia was involved in the inward current, we used lipopolysaccharide (LPS), a highly specific TLR4 agonist. The LPS induced inward current, which was decreased by pretreatment with Tak-242, a TLR4-specific inhibitor, and phenyl N-t-butylnitrone, a reactive oxygen species scavenger. The X/XO-induced inward current was also inhibited by pretreatment with Tak-242. These results indicate that the X/XO-induced inward current of SG neurons occurs through activation of TLR4 in microglial cells, suggesting that neuroglial cells modulate the nociceptive process through central sensitization.

파킨슨병 모델 흰쥐에서 침치료에 의한 microglia 활성화 억제에 관한 연구 (Acupuncture inhibits microglial activation in the rat model of Parkinson's disease)

  • 황정연;최일환;박재현;강전모;박히준;임사비나
    • Korean Journal of Acupuncture
    • /
    • 제24권1호
    • /
    • pp.131-144
    • /
    • 2007
  • Objectives : Although the cause of neuronal death of Parkinson's disease remains unclear, increasing evidence points to the role of inflammatory processes. And the hallmark of brain inflammation is the activation of microglia. This study was performed to prove the effect of acupuncture on inhibiting microglial activation. Methods : The rat models which were injected with 6-hydroxydopamine were treated with acupuncture once a day on LR3 (太衝) and GB34 (陽陵泉). To prove the effect of inhibiting microglial activation, we examined the tyrosine hydroxylase (TH) immunopositive neurons and CD11b immunohistochemistry in the substantia nigra. Results : There were 18% (third day), 32% (seventh day) loss of TH-positive cell bodies in the control group and 23% (third day), 26% (seventh day) in the acupuncture group, whereas 3% (third day), 10% (seventh day) in vehicle group. The difference of optical density in substantia nigra was evaluated by subtracting log inverse gray value of contralateral side from that of ipsilateral side. With regards to the result of CD11b immunohistochemistry, acupuncture group showed significantly inhibited microglial activation compared with control group (p<0.01) on the seventh day. Conclusions : Acupuncture showed the effect of inhibition of microglial activation in seventh day. However, the effect of protection of TH positive cell bodies was not shown. So we need longer investigation of the effect of acupuncture on Parkinson's disease.

  • PDF

Betulinic Acid Inhibits LPS-Induced MMP-9 Expression by Suppressing NF-kB Activation in BV2 Microglial Cells

  • Lee, Jae-Won;Choi, Yong-Joon;Kim, Song-In;Lee, Sue-Young;Kang, Sang-Soo;Kim, Nam-Ho;Kwon, Yong-Soo;Lee, Hee-Jae;Chun, Wan-Joo;Kim, Sung-Soo
    • Biomolecules & Therapeutics
    • /
    • 제19권4호
    • /
    • pp.431-437
    • /
    • 2011
  • Aberrant activation of microglia has been reported to cause neuronal damages by releasing a variety of pro-inflammatory cytokines. Besides where microglia become active, damages have been also observed in remote places, which is considered due to the migration of activated microglia. Therefore, an agent that could suppress abnormal activation of microglia and their subsequent migration might be valuable in activated microglia-related brain pathologies. The objective of the present study was to evaluate anti-inflammatory effects of betulinic acid on lipopolysaccharide (LPS)-stimulated BV2 microglial cells. Pretreatment of betulinic acid significantly attenuated LPS-induced NO production and protein expression of iNOS. Betulinic acid also significantly suppressed LPS-induced release and expression of cytokines such as TNF-${\alpha}$ and IL-$1{\beta}$. Furthermore, betulinic acid significantly uppressed LPS-induced MMP-9 expression, which has been suggested to play an important role in the migration of activated microglia. In order to understand the possible mechanism by which betulinic acid suppresses LPS-induced cytokine production and migration of microglia, the role of NF-kB, a major pro-inflammatory transcription factor, was examined. Betulinic acid significantly suppressed LPS-induced degradation of IKB, which retains NF-kB in the cytoplasm. Therefore, nuclear translocation of NF-kB upon LPS stimulation was significantly suppressed with betulinic acid. Taken together, the present study for the first time demonstrates that betulinic acid possesses anti-inflammatory activity through the suppression of nuclear translocation of NF-kB in BV2 microglial cells.

Botulinum Toxin Type A Attenuates Activation of Glial Cells in Rat Medullary Dorsal Horn with CFA-induced Inflammatory Pain

  • Kim, Min-Ji;Cho, Jin-Ho;Kim, Hye-Jin;Yang, Kui-Ye;Ju, Jin-Sook;Lee, Min-Kyung;Park, Min-Kyoung;Ahn, Dong-Kuk
    • International Journal of Oral Biology
    • /
    • 제40권2호
    • /
    • pp.71-77
    • /
    • 2015
  • The activation of glial cells in the spinal cord has been contribute to the initiation and maintenance of pain facilitation induced by peripheral inflammation and nerve injury. The present study investigated effects of botulinum toxin type A (BoNT-A), injected subcutaneously or intracisternally, on the expression of microglia and astrocytes in rats. Complete Freund's Adjuvant (CFA)-induced inflammation was employed as an orofacial chronic inflammatory pain model. A subcutaneous injection of $40{\mu}L$ CFA into the vibrissa pad was performed under 3% isoflurane anesthesia in SD rats. Immunohistochemical analysis for changes in Iba1 (a microglia marker) and GFAP (an astrocyte marker), were performed 5 days after CFA injection. Subcutaneous injection of CFA produced increases in Iba1 and GFAP expression, in the ipsilateral superficial lamia I and II in the medullary dorsal horn of rats. Subcutaneous treatment with BoNT-A attenuated the up-regulation of Iba1 and GFAP expressions induced by CFA injection. Moreover, intracisternal injection of BoNT-A also attenuated the up-regulated Iba1 and GFAP expressions. These results suggest that the anti-nociceptive action of BoNT-A is mediated by modulation activation of glial cells, including microglia and astrocyte.

Crosstalk Signaling between IFN-γ and TGF-β in Microglia Restores the Defective β-amyloid Clearance Pathway in Aging Mice with Alzheimer's Disease

  • Choi, Go-Eun
    • 대한의생명과학회지
    • /
    • 제24권4호
    • /
    • pp.305-310
    • /
    • 2018
  • Microglia are emerging as critical regulators of innate immune responses in AD and other neurodegenerative disorders, highlighting the importance of understanding their molecular and cellular mechanisms. We attempted to determine the role of crosstalk signaling between $IFN-{\gamma}$ and $TGF-{\beta}$ in $A{\beta}$ clearance by microglia cells. We used in vitro and in vivo mouse models that recapitulated acute and chronic aspects of microglial responses to $A{\beta}$ peptides. We showed that crosstalk signaling between $TGF-{\beta}$ and Smad2 was an important mediator of neuro-inflammation. These findings suggest that microglial $TGF-{\beta}$ activity enhances the pathological progression to AD. As $TGF-{\beta}$ displays broad regulatory effects on beneficial microglial functions, the activation of inflammatory crosstalk signaling between $TGF-{\beta}$ and Smad2 may be a promising strategy to restore microglial functions, halt the progression of $A{\beta}$-driven pathology, and prevent AD development.

Ginsenoside Rg1 Attenuates Neuroinflammation Following Systemic Lipopolysaccharide Treatment in Mice

  • Shin, Jung-Won;Ma, Sun-Ho;Lee, Ju-Won;Kim, Dong-Kyu;Do, Kyuho;Sohn, Nak-Won
    • 대한본초학회지
    • /
    • 제28권6호
    • /
    • pp.145-153
    • /
    • 2013
  • Objectives : Neuroinflammation is characterized by microglial activation and the expression of major inflammatory mediators. The present study investigated the inhibitory effect of ginsenoside Rg1 ($GRg_1$), a principle active ingredient in Panax ginseng, on pro-inflammatory cytokines and microglial activation induced by systemic lipopolysaccharide (LPS) treatment in the mouse brain tissue. Methods : Varying doses of $GRg_1$ was orally administered (10, 20, and 30 mg/kg) 1 h before the LPS injection (3 mg/kg, intraperitoneally). The mRNA expression of pro-inflammatory cytokines in the brain tissue was measured using the quantitative real-time PCR method at 4 h after the LPS injection, Microglial activation was evaluated using western blotting and immunohistochemistry against ionized calcium binding adaptor molecule 1 (Iba1) in the brain tissue. Cyclooxigenase-2 (COX-2) expressions also observed using western blotting and immunohistochemistry at 4 h after the LPS injection, In addition, double-immunofluorescent labeling of tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) and COX-2 with microglia and neurons was processed in the brain tissue. Results : $GRg_1$ (30 mg/kg) significantly attenuated the upregulation of TNF-${\alpha}$, interleukin (IL)-$1{\beta}$ and IL-6 mRNA in the brain tissue at 4 h after LPS injection. Morphological activation and Iba1 protein expression of microglia induced by systemic LPS injection were reduced by the $GRg_1$ (30 mg/kg) treatment. Upregulation of COX-2 protein expression in the brain tissue was also attenuated by the $GRg_1$ (30 mg/kg) treatment. Conclusion : The results suggest that $GRg_1$ is effective in the early stage of neuroinflammation which causes neurodegenerative diseases.

Kaempferol이 LPS로 유도된 생쥐 중추신경계 염증에 미치는 영향 (Effects of Kaempferol on Lippolysaccharide-induced Inflammation in Mouse Brain)

  • 이흥기;김도훈;김연섭
    • 대한본초학회지
    • /
    • 제30권1호
    • /
    • pp.77-84
    • /
    • 2015
  • Objectives : Brain inflammation early activates the microglia and activated microglia secrete a variety of pro-inflammatory cytokines. Kaempferol, which is a flavonoid in Cuscutae Semen, shows a wide range of physiological activities, including neurons protection and anti-inflammatory actions through inhibition of pro-inflammatory mediators. The present study examined the modulatory effect of kaempferol on cytokines [tumor necrosis factor- alpha ($TNF-{\alpha}$), interleukin-1beta ($IL-1{\beta}$) and interleukin-6 (IL-6)] and cyclooxygenase-2 (COX-2) mRNA expression and microglia activation in the brain tissue of the mouse. Methods : Kaempferol was administered orally three doses of 10, 20 and 30 mg/kg respectively, once 1 hour before the lippolysaccharide(LPS) (3 mg/kg, i.p.) injection. Brain tissue was removed at 4 hours after LPS injection. Cytokines and COX-2 mRNA expression in the brain tissue was measured by the quantitative real-time polymerase chain reaction (PCR) method. Iba1 expression was calculated by western blotting method. Microglia was observed with immunohistochemistry. Immunohistochemistry stained microglia was analyzed by using ImageJ software. Results : Kaempferol 20 and 30 mg/kg was significantly attenuated the expression of $TNF-{\alpha}$, $IL-1{\beta}$ and IL-6 mRNA. Kaempfrol 10, 20 and 30 mg/kg significantly attenuated COX-2 mRNA expression in the brain tissue. Kaempferol 30 mg/kg significantly suppressed the increase of Iba1 protein expression by LPS. Kaempferol 30 mg/kg significantly decreased the number of microglia in the cerebral cortex and the number and cell size of microglia in the hypothalamic region and the area percentage of ionized calcium binding adaptor molecule 1(Iba1)-expressed microglia in the hippocampus. Conclusions : This results indicate that kaempferol plays an anti-inflammatory role in the brain.

Quercetin Derivatives from Siegesbeckia glabrescens Inhibit the Expression of COX-2 Through the Suppression of NF-κB Activation in Microglia

  • Lim, Hyo-Jin;Li, Hua;Kim, Jae-Yeon;Ryu, Jae-Ha
    • Biomolecules & Therapeutics
    • /
    • 제19권1호
    • /
    • pp.27-32
    • /
    • 2011
  • The activation of microglia induces the overproduction of inflammatory mediators that are responsible for the neurodegenerative disorders including Alzheimer's disease and Parkinson's disease. The large amounts of prostaglandin $E_2$ ($PGE_2$) produced by inducible cyclooxygenase (COX-2) is one of the main inflammatory mediators that can contribute to neurodegeneration. The inhibition of COX-2 thus may provide therapeutic strategy for the treatment of neurodegenerative diseases. From the activity-guided purification of EtOAc soluble fraction of Siegesbeckia glabrescens, four compounds were isolated as inhibitors of $PGE_2$ production in LPS-activated microglia. Their structures were determined as 3, 4'-dimethylquercetin (1), 3, 7-dimethylquercetin (2), 3-methylquercetin (3) and 3, 7, 4'-trimethylquercetin (4) by the mass and NMR spectral data analysis. The compounds 1-4 showed dose-dependent inhibition of $PGE_2$ production in LPS-activated microglia with their $IC_{50}$ values of 7.1, 4.9, 4.4, $12.4\;{\mu}M$ respectively. They reduced the expression of protein and mRNA of COX-2 through the inhibition of I-${\kappa}B{\alpha}$ degradation and NF-$\kappa}B$ activity that were correlated with the inactivation of p38 and ERK. Therefore the active compounds from Siegesbeckia glabrescens may have therapeutic effects on neuro-inflammatory diseases through the inhibition of overproduction of $PGE_2$ and suppression of COX-2 overexpression.

Synthetic 3',4'-Dihydroxyflavone Exerts Anti-Neuroinflammatory Effects in BV2 Microglia and a Mouse Model

  • Kim, Namkwon;Yoo, Hyung-Seok;Ju, Yeon-Joo;Oh, Myung Sook;Lee, Kyung-Tae;Inn, Kyung-Soo;Kim, Nam-Jung;Lee, Jong Kil
    • Biomolecules & Therapeutics
    • /
    • 제26권2호
    • /
    • pp.210-217
    • /
    • 2018
  • Neuroinflammation is an immune response within the central nervous system against various proinflammatory stimuli. Abnormal activation of this response contributes to neurodegenerative diseases such as Parkinson disease, Alzheimer's disease, and Huntington disease. Therefore, pharmacologic modulation of abnormal neuroinflammation is thought to be a promising approach to amelioration of neurodegenerative diseases. In this study, we evaluated the synthetic flavone derivative 3',4'-dihydroxyflavone, investigating its anti-neuroinflammatory activity in BV2 microglial cells and in a mouse model. In BV2 microglial cells, 3',4'-dihydroxyflavone successfully inhibited production of chemokines such as nitric oxide and prostaglandin $E_2$ and proinflammatory cytokines such as tumor necrosis factor alpha, interleukin 1 beta, and interleukin 6 in BV2 microglia. It also inhibited phosphorylation of mitogen-activated protein kinase (MAPK) and nuclear factor $(NF)-{\kappa}B$ activation. This indicates that the anti-inflammatory activities of 3',4'-dihydroxyflavone might be related to suppression of the proinflammatory MAPK and $NF-{\kappa}B$ signaling pathways. Similar anti-neuroinflammatory activities of the compound were observed in the mouse model. These findings suggest that 3',4'-dihydroxyflavone is a potential drug candidate for the treatment of microglia-related neuroinflammatory diseases.