• Title/Summary/Keyword: Microfluidic Channel

Search Result 137, Processing Time 0.024 seconds

Feasibility Study for a Lab-chip Development for LAL Test (LAL 시험용 Lab-chip 개발을 위한 타당성 연구)

  • 황상연;최효진;서창우;안유민;김양선;이은규
    • KSBB Journal
    • /
    • v.18 no.5
    • /
    • pp.429-433
    • /
    • 2003
  • LAL (Limulus amebocyte lysate) test to detect and quantity endotoxin is based on gellation reaction between endotoxin and LAL from a blood extract of Limulus polyphemus. The test is labor intensive requiring dedicated personnel, takes relatively long reaction time (approximately 1 hr), requires relatively large volume of samples and reagents, and its end-point detection method is rather subjective. To solve these problems, we attempted to develop a miniaturized LOC (lab-on-a-chip) prototype using PDMS and glass. Using the 62 mm (length) ${\times}$ 18 mm (width) prototype in which 2 mm (width) ${\times}$ 44.34 mm (length) ${\times}$ 100 $\mu\textrm{m}$ (depth) microfluidic channel was provided, we compared the various detection methods of gellation, turbidometric, and chromogenic assays to find the chromogenic method to be the most suitable for small volume assay. In this assay, kinetic point method was more accurate than end point method. We also found the PDMS chip thickness should be minimized to around 2 mm to allow sufficient light transmittance, which necessitated a glass slide bonding for chip rigidity. Through the miniaturization, the test time was reduced from 1 hr to less than 10 minutes, and the sample volume could be reduced from 100 ${\mu}\ell$ to 4.4 ${\mu}\ell$. In sum, this study revealed that the mini LOC could be an alternative for a semi-automated and reliable method for LAL test.

Transient Evolution of Overlapped EDL Fields in a Microfluidic Channel (미소유동 채널에서 중첩된 전기이중층 구조의 과도 형성과정)

  • Kwak, Ho-Sang;Hasselbrink, Jr., Ernest F.
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1528-1533
    • /
    • 2004
  • A numerical investigation is made of transient evolutionary prcocess of electroosmotic flow in a two-dimensional microchannel connected to a reservoir. The channel height is very small so that two electric double layers forming on the charged surfaces are overlapped. Transient transports of ions in the electrolyte solution are computed by integrating the Nernst-Planck equation together with the Poisson equation for electric potential. The numerical results illustrate that there are two distinct transient phases. The physical mechanisms and relevant time scales for the transient evolution are described.

  • PDF

A NUMERICAL STUDY ON FLOW AND STIRRING CHARACTERISTICS IN A MICROCHANNEL WITH PERIODIC ARRAY OF CROSS BAFFLES (엇갈림 배플 구조의 마이크로 채널 내 유동 및 혼합 특성에 관한 수치해석적 연구)

  • Heo, S.G.;Kang, S.M.;Suh, Y.K.
    • Journal of computational fluids engineering
    • /
    • v.11 no.4 s.35
    • /
    • pp.101-106
    • /
    • 2006
  • In the microfluidic devices the most important thing is mixing efficiency ol various fluids. In this study a newly designed miler is proposed to enhance the mixing effect with the purpose to apply it to microchannel mixing in a short future. This design is composed of a channel with cross baffles periodically arranged on the both bottom and top surfaces ol the channel. To obtain the yow patterns, the numerical computation was performed by using a commercial code, ANSYS CFX 10.0. To evaluate the mixing performance, we computed Lyapunov exponent and obtained Poincare sections. it was shown that our design provides the excellent mixing effect.

Fabrication of Printed Microfluidics Channel by using Thermal Roll-Imprinting

  • Yu, Jong-Su;Jo, Jeong-Dai;Yoon, Seong-Man;Kim, Hee-Yeoun;Kim, Dong-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1472-1475
    • /
    • 2009
  • The microfluidics channel were fabricated using thermal roll-imprinting process on plastic substrates. As rollimprinting surface is heated directly at $100^{\circ}C$ and printing process proceed 380/400 kgf pressure, we fabricated microfluidic patterns separated line of $40.04{\mu}m$, serpentine line of $113.89{\mu}m$ and depth of imprint pattern is $15.35{\mu}m$, it means to get fine pattern has more than 70% imprint rate in designed mask.

  • PDF

Fabrication and Characteristics of Thermopneumatic-Actuated Polydimethylsiloxane Microvalve (열공압 방식의 Polydimethylsiloxane 마이크로 밸브의 제작 및 특성)

  • 김진호;조주현;한경희;김영호;김한수;김용상
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.4
    • /
    • pp.231-236
    • /
    • 2004
  • A normally open thermopneumaticc-actuated microvalve has been fabricated and their properties are investigated. The advantages of the proposed microvalve are of the low cost fabrication process and the transparent optical property using polydimethylsiloxane (PDMS) and indium tin oxide (ITO) glass. The fabricated microvalves with in-channel configuration are easily integrated with other microfluidic devices on the same substrate. The fabrication process of thermopneumatic-actuated microvalvesusing PDMS is very simple and its performance is very suitable for a disposable lab-on-a-chip. The PDMS membrane deflection increases and the flow rates of the microchannel with microvalvels decrease as the applied power to the ITO heater increases. The powers at flow-off are dependent on the membrane thickness and the applied inlet pressure but are independent of the channel width of microvalves. The flow rate is well controlled by the switching function of ITO heater and the closing/opening times are around 20 sec and 25 sec, respectively.

Fabrication and validation study of a 3D tumor cell culture system equipped with bloodvessle-mimik micro-channel (혈관모사 마이크로채널이 장착된 3D 종양 세포 배양 시스템의 제작 및 검증 연구)

  • Park, Jeong-Yeon;Koh, Byum-seok;Kim, Ki-Young;Lee, Dong-Mok;Yoon, Gil-Sang
    • Design & Manufacturing
    • /
    • v.15 no.2
    • /
    • pp.11-16
    • /
    • 2021
  • Recently, three-dimensional (3D) cell culture systems, which are superior to conventional two-dimensional (2D) vascular systems that mimic the in vivo environment, are being actively studied to reproduce drug responses and cell differentiation in organisms. Conventional two-dimensional cell culture methods (scaffold-based and non-scaffold-based) have a limited cell growth rate because the culture cannot supply the culture medium as consistently as microvessels. To solve this problem, we would like to propose a 3D culture system with an environment similar to living cells by continuously supplying the culture medium to the bottom of the 3D cell support. The 3D culture system is a structure in which microvascular structures are combined under a scaffold (agar, collagen, etc.) where cells can settle and grow. First, we have manufactured molds for the formation of four types of microvessel-mimicking chips: width / height ①100 ㎛ / 100 ㎛, ②100 ㎛ / 50 ㎛, ③ 150 ㎛ / 100 ㎛, and ④ 200 ㎛ / 100 ㎛. By injection molding, four types of microfluidic chips were made with GPPS (general purpose polystyrene), and a 100㎛-thick PDMS (polydimethylsiloxane) film was attached to the top of each microfluidic chip. As a result of observing the flow of the culture medium in the microchannel, it was confirmed that when the aspect ratio (height/width) of the microchannel is 1.5 or more, the fluid flows from the inlet to the outlet without a backflow phenomenon. In addition, the culture efficiency experiments of colorectal cancer cells (SW490) were performed in a 3D culture system in which PDMS films with different pore diameters (1/25/45 ㎛) were combined on a microfluidic chip. As a result, it was found that the cell growth rate increased up to 1.3 times and the cell death rate decreased by 71% as a result of the 3D culture system having a hole membrane with a diameter of 10 ㎛ or more compared to the conventional commercial. Based on the results of this study, it is possible to expand and build various 3D cell culture systems that can maximize cell culture efficiency by cell type by adjusting the shape of the microchannel, the size of the film hole, and the flow rate of the inlet.

An Electrical Particle Velocity Profiler Using Particle Transit Time Across Uneven Inter-Gap Electrodes (비등간격 전극열에서의 입자 통과시간을 이용한 전기적 입자속도분포 검출기)

  • Kim, Tae-Yoon;Lee, Dong-Woo;Cho, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.4
    • /
    • pp.297-302
    • /
    • 2008
  • We present an electrical particle velocity profiler using particle transit time across uneven inter-gap electrodes. We measure both the particle position and velocity from the voltage signals generated by the particles passing across sensing electrodes, thus obtaining the velocity profile of the particles in a microfluidic channel. In the experimental study, we use polystyrene microparticles to characterize the performance of the electrical particle velocity profiler. The particle velocity profile is measured with the uncertainty of 5.44%, which is equivalent to the uncertainty of 5% in the previous optical method. We also experimentally demonstrate the capability of the present method for in-channel clogging detection. Compared to the previous optical methods, the present electrical particle velocity profiler offers the simpler structure, the cheaper cost, and the higher integrability to micro-biofluidic systems.

Sheathless electrospray ionization with integrated metal emitter on microfluidic device (전기 분무 이온화를 이용한 단백질 질량분석용 마이크로 유체 소자의 제작 및 실험)

  • Kim, Min-Su;Joo, Hwang-Soo;Lee, Kook-Nyung;Kim, Byung-Gee;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.2102-2104
    • /
    • 2004
  • In this study, sheathless electrospray from PDMS/glass microchips with conducting metal emitter tip is described. A chip-based capillary electrophoresis/mass spectrometry (CE/MS) system has advantages of the CE separation and on-line electrospray detection of peptide solution. We have fabricated a new electrospray ionization(ESI) device composed of the metal emitter tip and CE separation channel monolithically in a glass microchip. The separation channel and metal emitter tip are fabricated using a glass wet etching and gold electro plating process, respectively. The fabricated micro electrospray chip was tested by spraying peptide sample for mass spectrometric analysis. Singlely-charged peak and doublely-charged peak of peptide were detected and further MS/MS fragmentation was performed in each peak. Direct comparisons with conventional glass or fused silica emitters showed very similar performance with respect to signal strength and stability.

  • PDF

EFFECT OF THE ZETA POTENTIAL CONTROL BY THE TRAPEZOIDAL ELECTRODES IN A MICROCHANNEL ON ENHANCEMENT MIXING-PERFORMANCE (마이크로 채널 내 사다리꼴 전극의 제타 포텐셜 변화에 따른 혼합효과 증대에 대한 수치해석적 연구)

  • Suh, Y.K.;Heo, H.S.;Kang, J.F.
    • Journal of computational fluids engineering
    • /
    • v.11 no.3 s.34
    • /
    • pp.46-51
    • /
    • 2006
  • This paper presents the numerical results of fluid flow and mixing in a microfluidic device for electro-osmotic flow (EOF) with an trapezoidal electrode array on the bottom wall (ETZEA). Differently from previous EOF in a channel which only transports fluid in colloidal system. ETZEA can also be utilized to mix a target liquid with a reagent. In this study we propose a method of controlling fluid flow and mixing enhancement. To obtain the flow and mixing characteristics, numerical computations are performed by using a commercial code, CFX-10, and a self-made code LBM-D. It was found that the flow near the trapezoidal electrode in the ETZEA is of 3-D complex flows due to the zeta potential difference between the trapezoidal electrode and channel walls, and as a consequence the hetrogeneous zeta potential on the electrodes plays an important role in mixing the liquid.

Development of a Barrier Embedded Chaotic Micromixer (배리어가 포함된 카오스 마이크로 믹서의 개발)

  • 김동성;이석우;권태헌;이승섭
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.1
    • /
    • pp.63-69
    • /
    • 2004
  • It is of great interest to enhance mixing performance in a microchannel in which the flow is usually characterized as a low Reynolds number (Re) so that good mixing is quite difficult to be achieved in this laminar flow regime. In this regard, we present a new chaotic passive micromixer, named Barrier Embedded Micromixer (BEM), of which the mixing mechanism is based on chaotic flows. In BEM, chaotic flow is induced by periodic perturbation of the velocity field due to periodically inserted barriers along the channel wall while a helical type of flow is obtained by slanted grooves on the bottom surface of the channel in the pressure driven flow. To experimentally compare the mixing performance, a T-microchannel and a microchannel with only slanted grooves were also fabricated. All microchannels were made of PDMS (Polydimethylsiloxane) from SU-8 masters that were fabricated by conventional photolithography. Mixing performance was experimentally characterized with respect to an average mixing intensity by means of color change of phenolphthalein as pH indicator. It was found that mixing efficiency decreases as Re increases for all three micromixers. Experimental results obviously indicate that BEM has better mixing performance than the other two. Chaotic mixing mechanism, suggested in this study, can be easily applied to integrated microfluidic systems , such as Micro-Total-Analysis-System, Lab-on-a-chip and so on.