• Title/Summary/Keyword: Microemulsion

Search Result 180, Processing Time 0.028 seconds

Synthesis of Ni-Ag Core-shell Nanoparticles by Polyol process and Microemulsion Process

  • Nguyen, Ngoc Anh Thu;Park, Joseph G.;Kim, Sang-Hern
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.10
    • /
    • pp.2865-2870
    • /
    • 2013
  • Ni-Ag core-shell nanoparticles were synthesized by polyol process and microemulsion technique successfully. In the polyol process, a chemical reduction method for preparing highly dispersed pure nickel and Ag shell formation have been reported. The approach involved the control of reaction temperature and reaction time in presence of organic solvent (ethylene glycol) as a reducing agent for Ag cation with poly(vinyl-pyrrolidone) (PVP. Mw = 40000) as a capping agent. In microemulsion method, the emulsion was prepared by water/cetyltrimetylammonium bromide (CTAB)/cyclohexane. The size of microemulsion droplet was determined by the molar ratio of water to surfactant (${\omega}_o$). The core-shell formation along with the change in structural phase and stability against oxidation at high temperature heat treatments of nanoparticles were investigated by X-ray diffraction and TEM analysis. Under optimum conditions the polyol process gives the Ni-Ag core-shell structures with 13 nm Ni core covered with 3 nm Ag shell, while the microemulsion method gives Ni core diameter of 8 nm with Ag shell of thickness 6 nm. The synthesized Ni-Ag core-shell nanoparticles were stable against oxidation up to $300^{\circ}C$.

The Preparation and Evaluation of Oil in Water Microemulsion (수중유형(水中油型) Microemulsion의 제조 및 평가)

  • Min, Shin-Hong;Yang, Joong-Ik;Kwon, Jong-Won;Jheong, Dae-Sik;Jheong, Yeoub
    • Journal of Pharmaceutical Investigation
    • /
    • v.16 no.2
    • /
    • pp.68-71
    • /
    • 1986
  • Oil in water microemulsion which has many pharmaceutical applications was prepared and evaluated. As oil sources and emulsifier, two grades of oil and egg phosphatide were used, respectively. Vacuum high shear mixing and high pressure homogenizing were performed and in the homogenizing step, effect of the number of passes in the homogenizer on the stability of microemulsion was studied, using Coulter counter, photographic microscope and pH-meter. From above results, it was concluded that the stability of microemulsion made of refined soy-bean oil was better than that of food grade soybean oil and by five passes in the homogenizer at 6,000 psi, we could make stable microemulsion with average particle diameter below $1\;{\mu}m$, with no particle above $5\;{\mu}m$ and no significant change during 6 weeks stored.

  • PDF

Development of Propofol-Ioaded Microemulsion Systems for Parenteral Delivery

  • Ryoo Hyun-Ki;Park Chun-Woong;Chi Sang-Cheol;Park Eun-Seok
    • Archives of Pharmacal Research
    • /
    • v.28 no.12
    • /
    • pp.1400-1404
    • /
    • 2005
  • The aim of the present study was to develop the aqueous parenteral formulation containing propofol using o/w microemulsion systems. Propofol itself was chosen as the oil phase and its content was fixed to 1$\%$, w/w. Pseudoternary phase diagrams were constructed to obtain the concentration range of surfactant and cosurfacatnt and the optimum ratio between them for microemulsion formation. Consequently, the suitability of the chosen microemulsion system as a parenteral formulation was evaluated from the stability and hemolysis tests on that. Among the surfactants and cosurfactants screened, the mixture of Solutol HS 15-ethyl alcohol (5/1) showed the largest o/w mocroemulsion region in the phase diagram. When 1 $\%$ (w/w) of propofol was solubilized with 8$\%$ (w/w) of Solutol $HS^{circledR}$??? 15-ethyl alcohol (5/1), the average droplet size (150 nm) and the content of propofol in the systems were not significantly changed at 40$^{circ}C$ for 8 weeks. The hemolysis test showed that this formulation was nontoxic to red blood cells. In conclusion, propofol was successfully solubilized with the o/w microemulsion systems.

Synthesis of TiO2 nanoparticles using Water-in-oil microemulsion method (유중수형(油中水型) 마이크로에멀젼법을 이용한 타이타니아 나노입자의 제조)

  • So Min Jin;Hyeon Jin;Seong Ju Kim;Yu Na Kim;Dae-Won Lee
    • Journal of Industrial Technology
    • /
    • v.43 no.1
    • /
    • pp.1-6
    • /
    • 2023
  • TiO2 is a versatile metal oxide material that is frequently used as a photo-catalyst for organic pollutant oxidation and a functional material for ultraviolet-ray protection. To improve its chemical/physical properties and widen the range of industrial application, it is demanded to control the crystalline feature and morphology precisely by applying advanced nano-synthesis methods. In this study, we prepared TiO2 nanoparticles using the water-in-oil (W/O) microemulsion method and compared them with the particles synthesized by the conventional precipitation method. Also, we tried to find the optimum conditions for obtaining nano-sized, anatase-rich TiO2 particles by the W/O microemulsion method. We analyzed the crystalline feature and particle size of the prepared samples using X-ray diffraction (XRD) and Transmission electron microscopy (TEM). In summary, we found the W/O microemulsion is more effective than precipitation in obtaining nano-sized TiO2. The best result was derived when the microemulsion was formed using AOT surfactant, hydrolysis was performed under basic condition and the sample was calcined at 200℃.

Microemulsion Fomulation for Enhanced Topical Absorption of Root Extract of Angelica gigas (당귀 추출물의 피부 흡수 증가를 위한 마이크로에멀젼 조성)

  • Jung, Eun-Jae;Choi, Joon-Ho;Park, Chun-Geon;Choi, Ae-Jin;Jeong, Se-Ho;Chung, Suk-Jae;Shim, Chang-Koo;Kim, Dae-Duk
    • YAKHAK HOEJI
    • /
    • v.56 no.3
    • /
    • pp.152-157
    • /
    • 2012
  • Angelica gigas is one of the most widely used herbal medicines in Asia. Root extract of Angelica gigas is known to have anti-oxidant activity and skin whitening effect. The aim of this study was to prepare microemulsion system of root extracts of Angelica gigas for topical delivery. Microemulsion was successfully prepared by using MCT (medium chain triglyceride) as an oil phase, Labrasol as a surfactant, and the mixture of propyleneglycol and phosphatidylcholine (4 : 1) as a cosurfactant. In vitro and in vivo skin permeation and deposition of decursin, as a marker, was determined using hairless mouse. Microemulsion significantly increased the in vitro skin permeation of decursin for up to 12 hours and was significantly higher than the control (water). Moreover, microemulsion formulation showed significantly higher skin deposition of decursin compared to the control in both in vitro and in vivo studies. Thus, microemulsion could be a useful vehicle for topical application of root extracts of Angelica gigas.

Preparation of α-Al2O3 Nanoparticles by flame Spray Pyrolysis (ESP) of Microemulsion (마이크로에멀전의 화염분무열분해(ESP)에 의한 α-알루미나 나노입자의 제조)

  • 이상진;전병세
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.3
    • /
    • pp.242-246
    • /
    • 2004
  • Nano-sized a-alumina with a narrow distribution was prepared by using Flame Spray Pyrolysis (FSP). The microemulsion of water in oil (W/O) was prepared to make ultrafine droplets for FSP process. Kerosene (fuel) as a continuos phase and Al(NO$_3$)$_3$$.$9$H_2O$ (oxidizer) aqueous solution as a dispersed phase were prepared for microemulsification. The microemulsion with dispersion stability was obtained by adjusting the composition of 80 vol% kerosene, 10 vol% aqueous solution, and 10 vol% emulsifying agent. Microemulsion was sprayed onto the flame by using two-fluid nozzle spray gun under the condition of 0.03 ㎫ air pressure. The synthesized products were $\alpha$-alumina phase with the size of 20 to 30 nm.

Preparation and Evaluation of Flurbiprofen- and Flurbiprofen Axetil-loaded Microemulsion (플루비프로펜 및 플루비프로펜 악세틸이 함유된 마이크로에멀젼의 제조 및 평가)

  • Shin, Kwang-Hyun;Hwang, Sung-Joo;Park, Kyung-Mi;Kim, Chong-Kook
    • YAKHAK HOEJI
    • /
    • v.41 no.5
    • /
    • pp.607-614
    • /
    • 1997
  • Flurbiprofen- and flurbiprofen axetil-loaded microemulsions composed of soybean oil, poloxamer 407, glycerine and water were prepared by generator-type homgenizer and ultrasoni c probe system. The particle size of microemulsions was measured by the dynamic light scattering method. The pharmacokinetics and organ distribution of flurbiprofen were investigated after intravenous injection of flurbiprofen solution, flurbiprofen-loaded microemulsion and flurbiprofen axetil-loaded microemulsions equivalent to 10mg/kg of flurbiprofen to rats. Blood samples were collected from the anterior ciliary artery of rats for 24hr, and flurbiprofen in plasma and organs was analyzed by HPLC. Stable microemulsions were prepared. Even though there is a little change in droplet size just after the preparation, no creaming and no separation were occured during the storage period for 6 months at 4, 21, 37 and 45$^{\circ}C$. Pharmacokinetic parameters and organ distribution of flurbiprofen after intravenous injection of flurbiprofen- and flurbiprofen axetil-loaded microemulsions emulsified with poloxamer 407 were not significantly different from those of commercial lipid microemulsion emulsified with lecithin. Therefore, it is concluded that flurbiprofen- and flurbiprofen axetil-loaded microemulsion prepared with poloxamer 407 could be used as a parenteral formulation.

  • PDF

Measurement of Metal-Film Removal Rate in a Microemulsion Using QCM

  • Ju, Min-Su;Koh, Moon-Sung;Kwon, Yoon-Ja;Park, Kwang-Heon;Kim, Hong-Doo;Kim, Hak-Won
    • Journal of Surface Science and Engineering
    • /
    • v.39 no.3
    • /
    • pp.121-128
    • /
    • 2006
  • A set of Quartz Crystal Microbalances (QCM's) was used to observe the film removal characteristics of three different $CO_2-nitric$ acid microemulsions. QCM's electroplated with nickel or copper were used as specimens. F-AOT, NP-4 and the newly synthesized Proline Surfactant-1 were used as surfactants to create microemulsions. While the F-AOT microemulsion yielded a relatively low removal rate, that of the Proline Surfactant-1 completely removed the Cu metal film within a short period of time. The NP-4 microemulsion removed the metal surface. However, removal rate measurements per QCM were not possible due to the instability of the microemulsion when Cu ions were present in the nitric solution. The reaction kinetics and metal removal capabilities of microemulsions formed by the different surfactants are explained along with the characteristics of reverse micelles.