• 제목/요약/키워드: Microclimate Simulation

검색결과 28건 처리시간 0.028초

시대별 아파트 단지의 미기후 분석 (Analysis of Microclimate in Apartment Complex by Age)

  • 김철희;정응호;김대욱;차재규
    • 한국주거학회:학술대회논문집
    • /
    • 한국주거학회 2009년도 추계학술발표대회 논문집
    • /
    • pp.104-108
    • /
    • 2009
  • Rapid urbanization resulted in expansion of urban area and increase of population bringing deepened housing shortage. Supply-oriented housing policy made apartment a representative residential space in Korea in spite of the short history of apartment. This study analyzed the shape and arrangement of main building by year and the microclimate in the complex depending on the number of floors. The purpose of this study was to present the basic data in developing apartment complex to solve problems like the stagnation of pollution source and the rise of temperature due to the declined ventilation in apartment complex, and the worsened urban heat island phenomenon due to the impeded flow of wind. This study rearranged the shape and arrangement of main building by year and the tendency of the number of floors by year in the process of change, by generalizing the process of change of apartment complex, a representative modern residential space through preliminary research. Based on it, 8 object lot by age was selected and simulated by using Envi-met. Simulation identified that the change of apartment complex takes place having a positive effect on microclimate in the apartment complex and the microclimate in the apartment complex is influenced a lot by the shape of complex. If in future apartment complex plan, a systematic legal criteria of design is made about the shape and arrangement of main building, it might have a positive effect on the improvement of microclimate in the apartment complex, a representative residential space in Korea.

  • PDF

고성토 도로의 건설이 미기후 환경에 미치는 영향에 관한 연구 (A Study on the Effects of High Embankment Road on the Microclimatic Environment)

  • 임익현;황의진;류지협
    • 한국재난관리표준학회지
    • /
    • 제4권1호
    • /
    • pp.29-37
    • /
    • 2011
  • 최근 고성토 도로건설 구간에서 거주민들이 고성토 도로가 생활환경에 영향과 경제적인 피해를 최소화 해 줄 것을 요구하는 민원이 급격하게 증가하는 실정이다. 본 연구에서는 고성토 도로와 교량이 건설되는 도로구간을 연구 대상지역으로 선정하고, 3차원 미기후모델 'Envi-met'을 이용하여 도로의 건설 전과 후에 온도장과 바람장의 변화에 대한 수치해석을 수행하였다. 그 결과를 요약하면 다음과 같다. 바람장의 분석 결과, 고성토 구간의 도로가 기류의 흐름 방해하여 바람장의 급격한 변화를 나타내었으며, 대부분 분석공간에서 풍속의 감소를 나타내었다. 그러나 교량 구간의 도로는 풍향에 미치는 영향이 크지 않았고, 풍속의 감소에 미치는 영향도 상대적으로 낮게 나타났다. 온도장의 분석 결과, 고성토 도로가 기류의 유동과 혼합을 방해하여 분석공간의 내부에서 미세한 온도의 변화가 나타났다. 이러한 결과는 도로건설 사업에서 수치모사의 이용이 미기후 변화와 교통사고 등과 같은 재난 가능성을 최소화하는데 필요한 유용한 정보를 제공할 수 있음을 나타내었다.

  • PDF

The use and potential applications of point clouds in simulation of solar radiation for solar access in urban contexts

  • Alkadri, Miktha F.;Turrin, Michela;Sariyildiz, Sevil
    • Advances in Computational Design
    • /
    • 제3권4호
    • /
    • pp.319-338
    • /
    • 2018
  • High-performing architecture should be designed by taking into account the mutual dependency between the new building and the local context. The performative architecture plays an important role to avert any unforeseen failures after the building has been built; particularly ones related to the microclimate impacts that affect the human comfort. The use of the concept of solar envelopes helps designers to construct the developable mass of the building design considering the solar access and the site obstruction. However, the current analysis method using solar envelopes lack in terms of integrating the detailed information of the existing context during the simulation process. In architectural design, often the current site modelling not only absent in preserving the complex geometry but also information on the surface characteristics. Currently, the emerging applications of point clouds offer a great possibility to overcome these limitations, since they include the attribute information such as XYZ as the position information and RGB as the color information. This study particularly presents a comparative analysis between the manually built 3D models and the models generated from the point cloud data. The modelling comparisons focus on the relevant factors of solar radiation and a set of simulation to calculate the performance indicators regarding selected portions of the models. The experimental results emphasize an introduction of the design approach and the dataset visibility of the 3D existing environments. This paper ultimately aims at improving the current architectural decision of support environment means, by increasing the correspondence between the digital models for performance analysis and the real environments (context of design) during the conceptual design phase.

Environmental Modeling and Thermal Comfort in Buildings in Hot and Humid Tropical Climates

  • Muhammad Awaluddin Hamdy;Baharuddin Hamzah;Ria Wikantari;Rosady Mulyadi
    • Architectural research
    • /
    • 제25권4호
    • /
    • pp.73-84
    • /
    • 2023
  • Indoor thermal conditions greatly affect the health and comfort of humans who occupy the space in it. The purpose of this research is to analyze the influence of water and vegetation elements as a microclimate modifier in buildings to obtain thermal comfort through the study of thermal environment models. This research covers two objects, namely public buildings and housing in Makassar City, South Sulawesi Prov-ince - Indonesia. Quantitative methods through field surveys and measurements based on thermal and personal variables. Data analysis based on ASHRAE 55 2020 standard. The data was processed with a parametric statistical approach and then simulated with the Computational Fluid Dynamics (CFD) simulation method to find a thermal prediction model. The model was made by increasing the ventilation area by 2.0 m2, adding 10% vegetation with shade plant characteristics, moving water features in the form of fountains and increasing the pool area by 15% to obtain PMV + 0.23, PPD + 8%, TSV-1 - +0, Ta_25.7℃, and relative humidity 63.5 - 66%. The evaluation shows that the operating temperature can analyze the visitor's comfort temperature range of >80% and comply with the ASHRAE 55-2020 standard. It is concluded that water elements and indoor vegetation can be microclimate modifiers in buildings to create desired comfort conditions and adaptive con-trols in buildings such as the arrangement of water elements and vegetation and ventilation systems to provide passive cooling effects in buildings.

BES 프로그램을 이용한 온실의 에너지 관리 (A Review of Greenhouse Energy Management by Using Building Energy Simulation)

  • 아드난 라쉬드;이종원;이현우
    • 생물환경조절학회지
    • /
    • 제24권4호
    • /
    • pp.317-325
    • /
    • 2015
  • 본 논문에서는 온실작물 생육에 적절한 미기상환경을 제공하기 위한 최적의 조건을 찾아내기 위하여 TRNSYS 프로그램을 이용하여 온실의 구조 및 환경인자와 에너지공급기술들에 대하여 시뮬레이션을 실시한 연구논문들을 분석하였다. 본 연구의 목적은 온실에너지 관리를 위해 사용되고 있는 여러 가지 에너지시스템과 기술들에 관하여 검토하고 이들에 대해 TRNSYS 시뮬레이션을 통해 실시한 효율분석에 관하여 검토하는 것이다. 사용가능한 에너지자원과 다양한 외부기상조건에 따른 에너지절감기술들의 성능을 분석하기 위한 여러가지 시뮬레이션 모델들에 대해서도 검토하였다. 사용자가 정의하는 인자들을 사용하여 하이브리드 농업시설을 시뮬레이션 할 수 있는 TRNSYS 프로그램의 주요 구조들을 찾아내었다. 문헌검토에서 얻어진 결과를 토대로 TRNSYS 프로그램을 이용하여 온실의 에너지관리를 위한 시뮬레이션 모델을 개발하는데 필요한 몇 가지 중요한 결론들을 도출하였다. TRNSYS 프로그램은 앞으로 온실의 에너지 시뮬레이션을 수행하는데 크게 활용될 것으로 기대된다.

초고층 오피스 건물의 수직외부환경 변화가 건물부하에 미치는 영향 (A Building Heating and Cooling Load Analysis of Super Tall Building considering the Vertical Micro-climate Change)

  • 김양수;송두삼;황석호
    • KIEAE Journal
    • /
    • 제10권4호
    • /
    • pp.117-122
    • /
    • 2010
  • In these days numerous super tall buildings are under construction or being planned in Middle East and Asian countries. Some of them are planned as an ultra high-rise building that goes over 600m tall, including Burj Khalifa, the tallest building in the world. External environment such as wind speed, temperature and humidity of the super tall building varies due to its vertical height. Therefore, it is necessary to consider these environmental changes to estimate building heating and cooling load. This paper analyzes how vertical microclimate difference affects building heating and cooling load in super tall building by simulation using radiosonde climate data. Besides, the correlation between air-tightness of building envelope and building load was analyzed for a super tall building.

도시의 수목이 기온의 조절에 미치는 영향 (Influences of Urban Trees on the Control of the Temperature)

  • 김수봉;김해동
    • 한국조경학회지
    • /
    • 제30권3호
    • /
    • pp.25-34
    • /
    • 2002
  • The purpose of this paper is to discuss the function of microclimate amelioration of urban trees regarding the environmental benefits of street trees in summer, focusing on the heat pollution-urban heat island, tropical climate day's phenomenon and air pollution. We measured the diurnal variation of air/ground temperatures and humidity within the vegetation canopy with the meteorological tower observation system. Summertime air temperatures within the vegetation canopy layer were 1-2$^{\circ}C$ cooler than in places with no vegetation. Due to lack of evaporation, the ground surface temperatures of footpaths were, at a midafternoon maximum, 8$^{\circ}C$ hotter than those under trees. This means that heat flows from a place with no vegetation to a vegetation canopy layer during the daytime. The heat is consumed as a evaporation latent heat. These results suggest that the extension of vegetation canopy bring about a more pleasant urban climate. Diurnal variation of air/ground temperatures and humidity within the vegetation canopy were measured with the meteorological tower observation system. According to the findings, summertime air temperatures under a vegetation canopy layer were 1-2$^{\circ}C$ cooler than places with no vegetation. Due mainly to lack of evaporation the ground surface temperature of footpaths were up to 8$^{\circ}C$ hotter than under trees during mid-afternoon. This means that heat flows from a place where there is no vegetation to another place where there is a vegetation canopy layer during the daytime. Through the energy redistribution analysis, we ascertain that the major part of solar radiation reaching the vegetation cover is consumed as a evaporation latent heat. This result suggests that the expansion of vegetation cover creates a more pleasant urban climate through the cooling effect in summer. Vegetation plays an important role because of its special properties with energy balance. Depended on their evapotranspiration, vegetation cover and water surfaces diminish the peaks of temperature during the day. The skill to make the best use of the vegetation effect in urban areas is a very important planning device to optimize urban climate. Numerical simulation study to examine the vegetation effects on urban climate will be published in our next research paper.

가로녹지 유형이 보행공간의 초미세먼지에 미치는 영향 분석 - 미기후 시뮬레이션을 활용하여 - (Analysis of the effect of street green structure on PM2.5 in the walk space - Using microclimate simulation -)

  • 김신우;이동근;배채영
    • 한국환경복원기술학회지
    • /
    • 제24권4호
    • /
    • pp.61-75
    • /
    • 2021
  • Roadside greenery in the city is not only a means of reducing fine dust, but also an indispensable element of the city in various aspects such as improvement of urban thermal environment, noise reduction, ecosystem connectivity, and aesthetics. However, in studies dealing with the effect of reducing fine dust through trees in existing urban spaces, microscopic aspects such as the adsorption effect of plants were dealt with, structural changes such as the width of urban buildings and streets, and the presence or absence of trees, Impact studies that reflect the actual form of In this study, the effect of greenery composition applicable to urban space on PM2.5 was simulated through the microclimate epidemiologic model ENVI-met, and field measurements were performed in parallel to verify the results. In addition, by analyzing the results of fine dust background concentration, wind speed, and leaf area index, the sensitivity to major influencing variables was tested. As a result of the study, it was confirmed that the fine dust reduction effect was the highest in the case with a high planting amount, and the reduction effect was the greatest at a low background concentration. Based on this, the cost of planting street green areas and the effect of reducing PM2.5 were compared. The results of this study can contribute as a basis for considering the effect of pedestrian space on air quality when planning and designing street green spaces.

Simulation of Dynamic Characteristics of a Trigenerative Climate Control System Based On Peltier Thermoelectric Modules

  • Vasilyev, G.S.;Kuzichkin, O.R.;Surzhik, D.I.
    • International Journal of Computer Science & Network Security
    • /
    • 제21권6호
    • /
    • pp.252-257
    • /
    • 2021
  • The application of the principle of trigeneration allows to simultaneously provide electricity to power electronic devices, as well as heat and cold to create the necessary microclimate of the premises and increase efficiency compared to separate cooling and heating systems. The use of Peltier thermoelectric modules (TEM) as part of trigenerative systems allows for smooth and precise control of the temperature regime, high manufacturability and reliability due to the absence of moving parts, resistance to shock and vibration, and small weight and size parameters of the system. One of the promising areas of improvement of trigenerative systems is their modeling and optimization based on the automatic control theory. A block diagram and functional model of an energy-saving trigenerative climate control system based on Peltier modules are developed, and the transfer functions of an open and closed system are obtained. The simulation of the transient characteristics of the system with varying parameters of the components is performed. The directions for improving the quality of transients in the climate control system are determined, as well as the prospects of the proposed methodology for modeling and analyzing control systems operating in substantially nonlinear modes.

MT-CLIM 프로그램을 이용한 일별 일사량 추정의 국내 적용성 검토 (Applicability of Daily Solar Radiation Estimated by Mountain Microclimate Simulation Model (MT-CLIM) in Korea)

  • 심교문;김용석;이덕배;강기경;소규호
    • 한국농림기상학회지
    • /
    • 제14권4호
    • /
    • pp.260-264
    • /
    • 2012
  • MT-CLIM 컴퓨터 프로그램을 이용한 일사량 추정의 국내 적용성 검토를 위하여 경북 의성군 일대에 7개 관측지점을 설정하고 실측 일사량과 프로그램에 의한 추정 일사량을 비교 검증하였다. 추정 일사량을 실측 일사량과 비교한 결과, 둘 사이에 결정계수 0.52의 선형관계가 확인되었고, 전체적으로는 과대 추정되는 것으로 조사되었다. MT-CLIM 프로그램에 의한 일사추정값의 RMSE는 평균 $3.83MJ\;m^{-2}$ 이어서, 일 평균 일사량 $15.27MJ\;m^{-2}$의 25% 정도에 해당되었고, 본 연구에서 사용한 일사센서의 허용오차가 표준센서의 ${\pm}5%$인 점을 감안하면 25%의 RMSE는 실용성이 떨어진다고 판단할 수 있다. 따라서 MT-CLIM 프로그램을 국내 농업분야에 적용하기 위해서는 지형보정계수 등 신뢰도를 개선시킬 추가적인 방법들이 모색되어야 할 것으로 판단된다.