• Title/Summary/Keyword: Microchannel heat exchanger

Search Result 24, Processing Time 0.02 seconds

Evaluation of Performance of a Residential Air-Conditioning System Using Microchannel and Fin-and-Tube Heat Exchanger (마이크로채널과 핀 튜브 열교환기를 적용한 가정용 에어컨디셔너의 성능 평가)

  • Yun, Rin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.1
    • /
    • pp.28-35
    • /
    • 2007
  • In this study the seasonal performance of a residential air conditioning system having either a fin-and-tube condenser or a microchannel condenser is experimentally investigated. A commercially available 7 kW capacity residential air conditioning system having a fin-and-tube condenser served as the base system. The test results show that the system with a microchannel heat exchanger has a reduced refrigerant charge amount of 10%, the coefficient of performance is increased by 6% to 10%, and the SEER is increased by 7% as compared with those of the base system. Moreover, the condensing pressure of the system is decreased by 100 kPa and the pressure drop across the condenser is decreased by 84%. The microchannel heat exchanger enhances the SEER of the residential air conditioning system by providing better heat transfers at reduced pressure drops.

Comparison of Performance Characteristics with Heat Exchanger Type in $CO_2$ Cycle (이산화탄소 사이클에서 열교환기의 형태 변화에 따른 성능특성 비교)

  • Bae, Kyung-Jin;Cho, Hong-Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.10
    • /
    • pp.657-664
    • /
    • 2010
  • The theoretical analysis of performance characteristics in a $CO_2$ cycle with the heat exchanger type was carried out. The size and performance of the fin-tube and microchannel heat exchanger were compared with operating conditions. As a result, the performance of the fin-tube gascooler and evaporator were more sensitive to the variation of operating condition compared to that of the microchannel gascooler and evaporator. Beside, the sizes of microchannel gascooler and evaporator could be decreased by 73% and 76%, respectively, compared to those of the fin-tube type gascooler and evaporator with the similar capacity. The COP and reliability of the $CO_2$ system can be increased by using a microchannel heat exchanger.

Numerical Study of Heat Transfer Enhancement on Microchannel Plate Heat Exchanger with Channel Shape (채널 형상에 따른 마이크로채널 판형 열교환기 열전달 성능 향상에 관한 수치 연구)

  • Jeon, Seung-Won;Kim, Yoon-Ho;Lee, Kyu-Jung
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.1888-1893
    • /
    • 2007
  • In this study, the microchannel plated heat exchanger were numerically studied for the enhancement of heat transfer in the channel configuration. Unit cold and hot fluid region with the microchannel were modeled and periodic boundary condition at the side wall was applied to continuously repeating geometry. The material of micro-structured plate is STS304 and working fluid is water. Triangular obstacles were placed in micro channel to enhance heat transfer. The performance of microchannel plated heat exchangers were numerically investigated with various obstacle configuration and Reynolds number under the parallel and counter flows. Heat transfer rate has increased about 18% compared with straight channel, but pressure drop also increased about 3.5 times. The main factor of increasing of pressure drop and heat transfer rate is considered that the momentum was lost to collide against obstacles, generation of secondary flow and boundary layer separation, wake and vortex forming phenomena.

  • PDF

Heat Transfer Characteristics and Pressure Drop in Straight Microchannel of the Printed Circuit Heat Exchangers (직관 마이크로채널 PCHE의 열전달특성 및 압력강하)

  • Kim, Yoon-Ho;Seo, Jung-Eun;Choi, Young-Jong;Lee, Kyu-Jung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.12
    • /
    • pp.915-923
    • /
    • 2008
  • The performance experiments for a microchannel printed circuit heat exchanger (PCHE) of high-performance and high-efficiency on the two technologies of micro photo-etching and diffusion bonding were performed in this study. The microchannel PCHE were experimentally investigated for Reynolds number in ranges of 100 $\sim$ 700 under various flow conditions in the hot side and the cold side. The inlet temperatures of the hot side were conducted in range of $40^{\circ}C\;{\sim}\;50^{\circ}C$ while that of the cold-side were fixed at $20^{\circ}C$. In the flow pattern, the counter flow was provided 6.8% and 10 $\sim$ 15% higher average heat transfer rate and heat transfer performance than the parallel flow, respectively. The average heat transfer rate, heat transfer performance and pressure drop increases with increasing Reynolds number in all the experiment. The increasing of inlet temperature in the experiment range has not an effect on the heat transfer performance while the pressure drop decrease slightly with that of inlet temperature. The experimental correlations to the heat transfer coefficient and pressure drop factor as a function of the Reynolds number have been suggested for the microchannel PCHE.

The Performance Comparison of $CO_2$ Gascooler and Evaporator with Heat Exchanger Type (열교환기 형태에 따른 이산화탄소용 가스쿨러와 증발기의 성능비교)

  • Bae, Kyung-Jin;Cho, Hong-Hyun
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.6 no.2
    • /
    • pp.15-22
    • /
    • 2010
  • The natural refrigerants have used into HVAC equipments because the CFCs and HFCs have some environmental problems like high ODP and GWP. The carbon dioxide has small effect on the environmental problem but also good thermodynamics properties. In this study, the simulation study on the performance and characteristics of a $CO_2$ gascooler and evaporator using a fin-tube and microchannel heat exchanger has been conducted. Besides, the comparison of performance with operating condition was carried out in order to apply to the $CO_2$ heat pump system. As a result, the front sizes of a gascooler and evaporator using a microchannel were decreased by 63% and 58%, respectively, compared to those using a fin-tube. The performance of the fin-tube gascooler and evaporator were more responsive to the variation of operating conditions compared to that of microchannel. The pressure drop of a fin-tube heat exchanger was higher than that of a microchannel one.

Numerical Model Development of a Microchannel Condenser for Mobile Air-Conditioning Systems (자동차용 에어컨의 마이크로채널 응축기의 수치적 모델 개발)

  • ISHAQUE, SHEHRYAR;ULLAH, NAVEED;CHOI, JUN-HO;KIM, MAN-HOE
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.4
    • /
    • pp.430-436
    • /
    • 2022
  • This paper presents the numerical model development of a microchannel heat exchanger in mobile air-conditioning and heat pump applications. The model has been developed based on the effectiveness-NTU method using a segment-by-segment modeling approach. State-of-art correlations are used for refrigerant- and air-side heat transfer coefficients and pressure drops. The calculated heat condenser capacities are in good agreement with experimental data, with an average difference of 1.86%. The current model can be used for microchannel condenser simulations under various operating conditions. It is anticipated to improve productivity in designing and optimizing microchannel heat exchangers with folded louver fin geometry.

Microscale Heat Transfer Enhancement by Acoustic Streaming Flow (음향흐름유동 기반 마이크로 스케일 열전달 성능 향상)

  • Jeongu Ko;Jinsoo Park
    • Journal of the Korean Society of Visualization
    • /
    • v.22 no.2
    • /
    • pp.96-103
    • /
    • 2024
  • As micro-electronic devices are getting miniaturized, technology that can manage the temperature of confined area is required. On these demands, microchannel heat exchanger is suggested as promising solution. However, due to laminar flow created inside the microchannel with high Reynolds number suppresses diffusion based natural convection, leads to low heat transfer performance of microchannel. This paper shows how acoustic streaming flow enhances the heat transfer performance inside the microchannel without using additional structure or nanoparticle inside the straight microchannel and fluid numerically. Various parameters, such as Reynolds number (Re), initial displacement (ξ) was adopted to evaluate the influence of acoustic streaming flow. The results showed that acoustic streaming flow can disturb the thermal boundary, by creating the micro-vortex inside the straight-microchannel and enhance the heat transfer performance.

An Experimental Study on Heat Transfer Characteristics and Pressure Drop in Micro Plated Heat Exchangers with S-shape of Microchannel (S 형상의 마이크로 채널을 가진 마이크로 판형 열교환기의 열전달 특성 및 압력강하에 관한 실험적 연구)

  • Seo, Jang-Won;Kim, Yoon-Ho;Moon, Chung-Eun;Lee, Kyu-Jung
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.1876-1881
    • /
    • 2007
  • The micro plated heat exchangers were designed to transfer more heat/volume or mass than previous heat exchangers within the context of the design constraints specified. The increase of the surface-to-volume ratio results in an increase of the interfacial area. This enhances considerably the performance of a heat exchanger. This can be an important component in a wide range of applications fuel cell, aerospace, automotive, electronic system and home heating, etc). In this study, the performance evaluation of micro plated heat exchangers under the counter flows with straight and S-shaped channel are carried out. The pressure drop as well as inlet and outlet fluid temperature were measured at steady state under various operating conditions and the total heat transfer rate were also calculated.

  • PDF

Development of Heat Exchanger Production Model Based on the Microlamination Technology and Estimation of its Economic Efficiency (마이크로 적층기술을 이용한 열교환기 생산모델 개발과 경제성 평가)

  • Ryuh, Beom-Sahng;Kim, Jae-Hee;Park, Sang-Min
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.3
    • /
    • pp.97-103
    • /
    • 2006
  • The development of a heat exchanger production model based on the microlamination technology and it's economic efficiency is addressed. A microchannel production model is proposed for the high-volume production. The microlamination system is made up of lamina patterning, laminae sorting and laminae bonding. A cost estimation model is developed based on the hewn cycle time and capital equipment costs. An economic efficiency analysis is performed to determine the cost drivers under the different market and product scenarios. The result of the economic efficiency analysis indicated that the device size and the production rate have a great effect on the overall manufacturing cost of microlamination devices. And it can be concluded that the microlamination should focus on bonding larger laminae and reducing both cycle time and warpage.

Numerical Study on the Performance of a Microchannel Heat Exchanger with a Novel Channel Array (새로운 채널 배열을 통한 마이크로채널 열교환기 성능 향상 수치 연구)

  • Jeon, Seung-Won;Lee, Kyu-Jung;Moon, Dong-Ju
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.11
    • /
    • pp.1119-1126
    • /
    • 2011
  • In conventional microchannel heat exchangers, only one kind of fluid (hot or cold) flows in each plate. The channels contain different kinds of fluid depending on the vertical position, but they have the same kind of fluid at all horizontal positions. Therefore, there is a slower heat transfer rate in the horizontal direction than in the vertical direction. We propose a microchannel heat exchanger in which hot and cold fluid flows alternately in each plate to improve the thermal performance. This novel channel array requires a special design for the inlet and outlet. The proposed channel array has a faster heat transfer rate than a conventional channel array. The thermal performance of the novel channel array increases with increasing Reynolds number and Prandtl number, but it decreases as the ratio of solid to fluid thermal conductivity increases.