• Title/Summary/Keyword: Microcellular foaming process

Search Result 43, Processing Time 0.032 seconds

Thermal modeling of microcellular foamed polymer matrix (초미세 발포 성형 고분자 물질의 열전달 모델링)

  • Moon, Byeong_Gi;Cha, Sung-Woon;Oh, Sei-Woong
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.367-372
    • /
    • 2000
  • By the means of microcellular (earning, we can make polymers with $10{\mu}m$ sized gas bubbles. After the $CO_2$ gas bubbles solve, diffuse and leave the polymer matrix, the thermal properties of polymer matrix are changed. Expecially, thermal conductivity becomes low. So, the polymer matrixes with gas bubbles can be used as insulator In this paper, we make model after microcellular foamed polymer matrix to know the change of thermal properties. Most of all, the purpose of this paper is the mlcrocellular foamed polymer matrix's availability as a insulator Beside of thermal properties the surface of microcellular foamed polymer is polished and easy to be colored. Above all the mechanical properties are better than the other insulator. So, microcellular foamed polymer can be used as exterior of building or it can be replaced as a tile.

  • PDF

공리적 설계를 이용한 초미세 발포 공정 설계

  • Jeong, Dae-Jin;Cha, Sung-Woon;Yoon, Jae-Dong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.1
    • /
    • pp.195-200
    • /
    • 2001
  • There is a great demand for reducing the amount of material used in mass-produced plastics parts, for material cost constitutes up to 75% of the total production cost. Plastics do not easily decay which causes environmental problem. Furthermore, material reduction therefore decreases the amount of oil needed for the manufacture of plastics and thus help conserve this natural resource. Therefore, microcellular foamed plastics(MCPs) was developed at MIT to solve these problem alternation 1980's. Until now, however, microcellular foaming process not designed systematically because the key factors governing the process were not clear. The goal of this research is to obtain the optimal design of the microcellular plastics by using axiomatic approach.

  • PDF

Effect of Talc on cell density in foam processing with CO2 (Talc 함유량이 초미세 발포 셀-밀도에 미치는 영향)

  • 이보형;차성운
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1406-1409
    • /
    • 2003
  • There is a great demand for reducing the amount of material used in mass-produced plastics parts, for material cost constitutes a large percentage of the total cost of 60%. It may be noted that the price of plastics is directly rotated to the price of petroleum. Material reduction therefore decreases the amount of oil needed for the manufacture of plastics and thus help conserve this natural resource. Therefore microcellular foaming process(MCPs) was studied for solving this problems alternatively in 1980's at M.I.T Until now in MCPs carbon dioxide gas was mainly used for microcellular foaming. Besides, Talc was used for reducing the price of plastics. Consequently, we must certificate using the Talc in MCPs according to contents of the Talc.

  • PDF

Effect of Gas amount on Viscosity Change in Microcellular Plastics (가스의 주입량에 따른 초미세 발포플라스틱의 점도 변화)

  • Lee, Jung-Joo;Cha, Sung-Woon;Kim, Seung-Young
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1114-1119
    • /
    • 2004
  • In a foaming process of microcellular plastics (MCPs) with a injection molding, research on the viscosity change that occurs when the gas is injected to the polymer has received little attention despite its importance. The purpose of this paper is to provide the basic data required to determine the processing condition by measuring viscosity changes against the gas injection rates of the blowing agent, and to verify the influence of the viscosity change on the flow condition of polymer inside the mold at the injection process.

  • PDF

The Insulation Property of Microcellular Injection Molding Plastics (초미세 발포 사출 성형품의 단열 특성)

  • Lee, Jung-Hyun;Hong, Soon-Kug;Kim, Ji-Hyun;Yoon, Jae-Dong
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.263-268
    • /
    • 2001
  • MCPs means Micro Cellular Plastics. The micro-cells are generated in the products by the difference of dissolution through the pressure drop after super critical fluid of CO2 or N2 dissolves into polymer. We have developed injection molding process adopting MCPs and applied it to a broad range of injection molded thermoplastic materials and applications. It can prevent the leakage of impact strength and increase the thermal conductivity, moreover regulate the thermal conductivity. Then we can develop the high strength foaming plastics. Also, it can be gained a competitive advantage by utilizing its processing benefits, e.g. the lightweight products and significant reductions in material consumption.

  • PDF