• 제목/요약/키워드: Microcellular Foaming plastics

검색결과 22건 처리시간 0.024초

초미세 발포 플라스틱의 공극률에 따른 충격 강도 (Impact Strength as Foaming Magnitude of Microcellular Foamed Plastics)

  • 황윤동;차성운;김철진
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.341-345
    • /
    • 2001
  • New technoloty called microcellular foaming process was developed at MIT in 1980's. Although it has many good things, it could not be used it all sides of manufacturing plastics. Because it takes a long time for making foamed goods. So microcellular foaming injection molding process appeared to solve this problem. The first purpose of this research is to measure the impact strength as foaming magnitude of microcellular foamed plastics. There are two methods such as batch process and microcellular foaming injection molding process in making foamed plastics. According to the experimental data, the impact strength of each specimen was measured to find out the influence of foaming magnitude of microcellular foamed plastics.

  • PDF

초미세 발포 플라스틱의 음향특성 연구 (A Study on Acoustical Characteristics in Microcellular Foaming Plastics)

  • 차성운;김학빈;이병희;강연준
    • 한국정밀공학회지
    • /
    • 제25권9호
    • /
    • pp.71-77
    • /
    • 2008
  • Microcellular foaming plastics create a sensation at polymer industrial for lowering product costs and overcoming a lowering of mechanical intensity. Among many advantages, microcellular foaming plastics is well known to have a good acoustical properties. This research based on the experiment of sound absorption and transmission characteristics inquire into acoustical properties of microcellular foaming plastics. Difference of transmission loss of microcellular foaming plastics and solid materials was defined as cell effect. Also, cell effect is expressed by sound reflection and sound absorption. This study is expected to fundamental research to present economical, functional alternative plan for products using sound absorption and transmission materials.

결정성 수지의 발포특성 (The Foaming Characteristics of Microcellular Processing with Polypropylene in Semicrystalline States)

  • 이보형;차성운;윤재동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1828-1833
    • /
    • 2003
  • In a foaming process of microcellular plastics (MCPs) with a batch process, amorphous plastics and crystalline plastics have different characteristics for a foaming temperature. It is known that a foaming of amorphous plastics occurs at the temperature above a glass transition temperature, however, it is discovered that crystalline plastics do not take place above a glass transition temperature without exception, and even though the foaming occurs, it does not in all the range. In this research, to measure foaming temperature of crystalline polymer, a foaming experiment was performed using one of the typical crystalline polymer, polypropylene. To analyze whether the foaming occurs both at amorphous and crystalline fields, SEM was applied

  • PDF

질소 가스를 이용한 초미세 발포 고분자 재료의 무게변화 (Weight Change of Microcellular Plastics by Using nitrogen Gas)

  • 정대진;차성운;윤재동
    • 한국정밀공학회지
    • /
    • 제17권9호
    • /
    • pp.196-201
    • /
    • 2000
  • There is a great demand for reducing the amount of material used in mass-produced plastics parts for material cost constitutes a large percentage of the total cost of a product up to 75% It may be noted that the price of plastics is directly related to the price of petroleum. Material reduction therefore decreases the amount of oil needed for the manufacture of plastics and thus help conserve this natural resource. Therefore microcellular foaming process(MCPs) was studied for solving this problems alternatively in 1980's at M. I. T. Until now in microcellular plastics processes carbon dioxide gas was mainly used for microcellular foaming Because carbon dioxide has more solubility than any other gases such as nitrogen gas or helium gas. The purpose of the this research is measurement of changing of the microcellular plastics' weight by using nitrogen gas in injection molding an comparing weight reduction of microcellular foamed plastics for using carbon dioxide gas with nitrogen gas.

  • PDF

GLASS FIBER의 함유량에 따른 초미세 발포 플라스틱의 강도 변화 (A Change of Strength at Microcellular Foamed Plastics as Content of Glass Fiber)

  • 김보흥;차성운;황윤동
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.335-340
    • /
    • 2001
  • We use so many plastic products in everyday. Because polymer materials have a lot of merits including low cost and easiness of forming, they are widely used in many manufacturing industries. Microcellular foaming process was developed at MIT in 1980's to save a quantity of materials and increase mechanical properties. The improvement of strength is very important factor in relation with the reduction of mass. So the first purpose of this research is to improve the strength of the microcellular foamed plastics as variation of glass-fiber's volume friction. Also the characteristic of filler such as glass-fiber was presented in a microcellular foaming process.

  • PDF

가스의 용해량에 따른 ABS 수지의 점도 변화 (The Viscosity Change of ABS Resin According to Inert Gas Amount)

  • 정태형;하영욱;정대진
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.585-590
    • /
    • 1997
  • Conventional foaming process has defects such as lower mechanical properties than ur~foaming material due to non-uniform cell distribution and environmental pollution problem caused by chemical blowing agency. So, a new foaming process such as Microcelluar plastics has been introduced to use inactive gases as a foaming agency. In order to apply Microcellular plastics for mass production process system such as extrusion, injection molding and blow molding, it needs to predict the change in material properties of polymer according to the amount of meltingas. In Polymer molding applying Microcelluar plastics, the change of viscosity among several material properties is the most important factor. Therefore, this paper is aimed to establish the method which not only finds out but also predicts the change of viscosity of ABS(Acrylonitri1e Butadiene Styrene) resin according to inert gas amount in extrusion molding.

  • PDF

초미세 발포 사출 성형 공정에서 성형된 플라스틱의 수축률 측정에 관한 연구 (A Study on Measurement of Shrinkage of Molded Plastics in a Microcellular Foaming Injection Molding Process)

  • 황윤동;차성운;이정현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집C
    • /
    • pp.621-626
    • /
    • 2001
  • Microcellular foaming process was developed at MIT in 1980's to save a quantity of raw materials and improve mechanical properties. There are many process variables in appling microcellular foaming process to the conventional injection molding process. Of all process variables, part dimension control and shrinkage are the most influential on the post molded dimension. The post molding dimensional change of thermoplastic resins is important to tool designers for predicting the specific difference of molded part vs. actual mold cavity. Generally, articles injection molded are smaller in size than the cavity; hence, the term shrinkage factor is used to define the allowance a designer specifies. It is important to consider the factors that influence molded part dimension. According to ASTM Designation: D 955, shrinkage from mold dimensions of molded plastics was measured. In injection molding, the difference between the dimensions of the mold and of the molded article produced therein from a given material may vary according to the design and operation of the mold. In this paper, shrinkage data of molded plastic parts was obtained. It can be an important information for designing optimum mold system in a microcellular foaming injection molding process.

  • PDF

초미세 발포 플라스틱의 유리전이온도를 변화시키는 가스 용해량의 영향 (The Effect of Gas Absorption Induced a Change of Glass Transition Temperature in Microcellular Foamed Plastics)

  • 황윤동;차성운
    • 대한기계학회논문집A
    • /
    • 제25권5호
    • /
    • pp.816-822
    • /
    • 2001
  • The thermoforming process is widely used in the plastics industry to produce articles for the packaging, automotive, domestic construction and leisure industries. The microcellular foaming process appeared at M.I.T. in 1980s to save a quantity of polymer materials and increase their mechanical properties. The glass transition temperature of polymer materials is one of many important process variables in appling the microcellular foaming process to the conventional thermoforming process. The goal of this research is to evaluate the relation between gas absorption and glass transition temperature in batch process using microcellular foaming process. The weight gain ratio of polymer materials has a conception of gas absorption. Polymers such as acrylonitrile-butadiene-styrene(ABS), polystyrene(PS) have been used in this experiment. According to conventional Chows model and Cha-Yoon model, it was estimated with real experimental result to predict a change of glass transition temperature as a function of the weight gain ratio of polymer materials in batch process to gain microcellular foamed plastic products.