• Title/Summary/Keyword: Microbubble

Search Result 107, Processing Time 0.035 seconds

Effect of washing methods on the quality of freshly cut sliced Deodeok (Codonopsis lanceolata) during storage (세척방법에 따른 신선편이 슬라이스 더덕의 저장 중 품질 특성 변화)

  • Choi, Duck-Joo;Lee, Yun-Jung;Kim, Youn-Kyeong;Kim, Mun-Ho;Choi, So-Rye;Cha, Hwan-Soo;Youn, Aye-Ree
    • Food Science and Preservation
    • /
    • v.20 no.6
    • /
    • pp.751-759
    • /
    • 2013
  • There is increasing interest in freshly cut products, that is, foods produced without washing and cutting. In this study, the quality of freshly cut sliced Deodeok was compared with that of what based on its washing methods. In bubble washing, the Deodeok rises to the water surface apace and is broken into centimeter sizes. Microbubble washing calls for the production of a great number of 0.1 mm-sized bubbles in anions-bearing water and their passing through a trumpet-shaped hole at a high pressure. To compare the product deterioration rates of the specimens, they were stored at $10^{\circ}C$ for 10 days. In the specimens washed with the control method and with hand washing, the deterioration rate was 80%; and in the specimens washed with bubble and microbubble washing, 20~30%. The L-value (an index of browning) was higher in the bubble and microbubble washing than in the control and the hand washing, which implies that browning was minimized during the storage. As for the viable cell and coliform group counts that were measured during the storage, the specimens washed with the control method showed the highest values. In contrast, the specimens washed with microbubble washing showed the lowest values. In the sensory test, the specimens washed with microbubble were highest in storage preference. In conclusion, the Deodeok that was stored after it was washed with microbubble washing was found to have had the best quality.

Sterilizing Effect of Plant Pathogenic Fungi using Ozone Microbubble (오존마이크로버블을 이용한 식물병원균 살균효과)

  • Kim, Chang Shoo;Yu, Sang Yeol;Lee, Gong In;Kim, Seung Han;Lee, Jong Won;Song, Jae Kwan
    • Journal of Bio-Environment Control
    • /
    • v.23 no.3
    • /
    • pp.250-255
    • /
    • 2014
  • Sterilization is an important factor in reprocessing of drained nutrient solution (RDN). To evaluate the suitability of ozone microbubble for RDN in protected horticulture and plant factory, strong fungicidal activity of ozone and microbubble were applied. This experiment was taken advantage of ozonated water (OW) and ozone gas (OG). The Fusarium oxysporum (FO), Phytophthora capsici (PC) and Colletotrichum gloeosporioides (CG) were treated with OW 0.5, 1.0 and 2.0 ppm and OG $3.0g{\cdot}h^{-1}$ for 0, 30, 60, 120 and 180 sec. Results of this experiment can be summed up as follows : In the OW, FO was sterilized by 0.5 ppm in 60 sec and PC was sterilized by 2.0 ppm in 30 sec. In the OG, FO and PC both of them were sterilized in 180 sec. However, CG was not sterilized using OW and OG. Overall, ozone microbubble showed possibility of sterilization in RDN. However, CG is required to more ozone concentration and processing time.

Probing of Microscale Phase-Change Phenomena Based on Michelson Interforometry (Michelson 간섭계를 응용한 미세 상변화 현상 계측)

  • Kim, Dong-Sik;Park, Hee-K.;Grigoropoulos, Costas P.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.348-353
    • /
    • 2001
  • Experimental schemes that enable characterization of phase-change phenomena in the micro scale regime is essential for understanding the phase-change kinetics. Particularly, monitoring rapid vaporization on a submicron length scale is an important yet challenging task in a variety of laser-processing applications, including steam laser cleaning and liquid-assisted material ablation. This paper introduces a novel technique based on Michelson interferometry for probing the liquid-vaporization process on a solid surface heated by a KrF excimer laser pulse (${\lambda}=248nm,\;FWHM=24\;ns$) in water. The effective thickness of a microbubble layer has been measured with nanosecond time resolution. The maximum bubble size and growth rate are estimated to be of the order of $0.1{\mu}m\;and\;1\;m/s$, respectively. The results show that the acoustic enhancement in the laser induced vaporization process is caused by bubble expansion in the initial growth stage, not by bubble collapse. This work demonstrates that the interference method is effective for detecting bubble nucleation and microscale vaporization kinetics.

  • PDF

Probing of Microscale Phase-Change Phenomena Based on Michelson Interforometry (Michelson 간섭계를 응용한 미세 상변화 현상 계측)

  • Kim, Dong-Sik;Park, Hui-Gwon;Grigoropoulos, Costas-P.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.8
    • /
    • pp.1140-1147
    • /
    • 2001
  • Experimental schemes that enable characterization of phase-change phenomena in the microscale regime are essential for understanding the phase-change kinetics. Particularly, monitoring rapid vaporization on a submicron length scale is an important yet challenging task in a variety of laser-processing application, including steam laser cleaning and liquid-assisted material ablation. This paper introduces a novel technique based on Michelson interferometry for probing the liquid-vaporization process on a solid surface heated by a KrF excimer laser pulse(λ=248nm, FWHM=24ns) in water. The effective thickness of a microbubble layer has been measured with nanosecond time resolution. The maximum bubble size and growth rate are estimated to be of the order of 0.1㎛ and 1m/s, respectively. The results show that the acoustic enhancement in the laser induced vaporization process is caused by bubble expansion in the initial growth stage, not by bubble collapse. This work demonstrates that the interference method is effective for detecting bubble nucleation and microscale vaporization kinetics.

Analysis of Controlling the Size of Microbubble in DAF (DAF에서 기포의 크기제어 및 영향분석)

  • Dockko, Seok;Kwak, Dong-Heui;Kim, Young-Hwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.2
    • /
    • pp.235-241
    • /
    • 2004
  • The dissolved air flotation (DAF) process has been widely used for removing suspended solids with low density in water. It has been known as measuring the size of microbubbles precisely which move upward rapidly in contact zone is difficult. In this study particle counter monitoring (PCM) method is used to measure the rising microbubble after injection from a nozzle. Size and distribution curve of microbubbles are evaluated at different conditions such as pressure drop at intermediate valve, length of pipeline between saturation tank and nozzle and low pressure. And the efficiency is also checked when it collides with different size floc. The experimental results show the following fact. As the final pressure drop occurred closer to a nozzle, the bubble size became smaller. And small bubble collides with large floc as well as small one because of its physical characteristic. However large bubble collides well with large floc rather than small one since hydrodynamic flow in streamline interferes to collide between two. With performing computational process by mathematical model we have analyzed and verified the size effect between bubble and floc. Collision efficiency is the highest when P/B ratio shows in the range of 0.75 < P/B ratio ($R_{particle/Rbubble}$) < 2.0.

Sterilization Efficacy of Washing Method Using Based on Microbubbles and Electrolyzed Water on Various Vegetables (다양한 채소류에서 마이크로버블 및 전기분해수의 세척 살균 효과)

  • Lee, Woon-Jong;Lee, Chang-Hyun;Yoo, Jae-Yeol;Kim, Kwang-Yup;Jang, Keum-Il
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.6
    • /
    • pp.912-917
    • /
    • 2011
  • The sterilization efficacies of various washing solutions on the surfaces of vegetables such as sesame leaves, lettuce, and mini-cabbage were investigated. The washing solutions were tap water (TW), microbubble water (MB), electrolyzed water (EW), and microbubble electrolyzed water (MB+EW). After Escherichia coli and Bacillus cereus were artificially inoculated onto the surfaces of vegetables, each vegetable was washed for 1, 3, and 5 min with TW, MB, EW 100 (100 mg/L of available chlorine), EW 200 (200 mg/L of available chlorine), MB+EW 100, and MB+EW 200. The washing efficacy of MB was slightly higher than that of TW, and EW was more effective than MB (p<0.05). In all instances, the sterilization efficacies of MB+EW 100 and MB+EW 200 were higher than those of EW 100 and EW 200 (p<0.05). Thus, MB+EW offers an effective means of reducing the studied microorganisms in a short time period. The MB+EW washing method provides microbial reduction on the surfaces of various vegetables and enhances the microbiological safety of the vegetables.

A study on Microbubble Column flotation for Recovering High Grade Molybdenite (고품립(高品位) 몰리브덴광 선별(選別)을 위한 Microbubble Column 부선 특성 연구)

  • Kang, Hyun-Ho;Shin, Shung-Han;Jeon, Ho-Seok;Han, Oh-Hyung
    • Resources Recycling
    • /
    • v.19 no.2
    • /
    • pp.35-44
    • /
    • 2010
  • As the competition of acquiring foreign resources of advanced countries and developing countries intensifies, South Korea which imports most of the mineral resources, started to re-develop domestic mines for molybdenite ore, in order to secure stable natural resources and decrease foreign currency expense. In this study, as a result of performing XRD and composite analysis on Dongwon NMC's (the sole producer of molybdenite ore in Korea) final concentrate(Mo 50.4%), Quartz, Grossular and Hedenbergite exists as impurities and size analysis showed that in relative coarse particle range of 60~140 mesh was formed with high grade over 57% Mo. Also, a test was performed to confirm the possibilities of increasing the grade and recovery of Dong won NMC's final ore. As a result, Mo 58.6% ($MoS_2$ 97.83%) was obtained with 87.47% recovery at a condition of 15 minutes grinding time, Kerosene as collector 0.1 l/ton, AF as Frother 65 7.2 l/ton, wash water of 630 ml/min and air flow rate of 1,197 ml/min.

Ultrasound Targeted Microbubble Destruction for Novel Dual Targeting of HSP72 and HSC70 in Prostate Cancer

  • Wang, Hang-Hui;Song, Yi-Xin;Bai, Min;Jin, Li-Fang;Gu, Ji-Ying;Su, Yi-Jin;Liu, Long;Jia, Chao;Du, Lian-Fang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.3
    • /
    • pp.1285-1290
    • /
    • 2014
  • The aim was to determine whether ultrasound targeted microbubble destruction (UTMD) promotes dual targeting of HSP72 and HSC70 for therapy of castration-resistant prostate cancer (CRPC), to improve the specific and efficient delivery of siRNA, to induce tumor cell specific apoptosis, and to find new therapeutic targets specific of CRPC.VCaP cells were transfected with siRNA oligonucleotides. HSP70, HSP90 and cleaved caspase-3 expression were determined by real-time quantitative polymerase chain reaction and Western blotting. Apoptosis and transfection efficiency were assessed by flow cytometry. Cell viability assays were used to evaluate safety. We found HSP72, HSC70 and HSP90 expression to be absent or weak in normal prostate epithelial cells (RWPE-1), but uniformly strong in prostate cancerous cells (VCaP). UTMD combined with dual targeting of HSP72 and HSC70 siRNA improve the efficiency of transfection, cell uptake of siRNA, downregulation of HSP70 and HSP90 expression in VCaP cells at the mRNA and protein level, and induction of extensive tumor-specific apoptosis. Cell counting kit-8 assays showed decreased cellular viability in the HSP72/HSC70-siRNA silenced group. These results suggest that the combination of UTMD with dual targeting HSP70 therapy for PCa may be most efficacious, providng a novel, reliable, non-invasive, safe targeted approach to improve the specific and efficient delivery of siRNA, and achieve maximal effects.

Development of Venturi System for Microbubble Generation (미세기포 생성을 위한 벤츄리 시스템 개발)

  • Yun, Jeong Eui;Kim, Joo Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.10
    • /
    • pp.865-871
    • /
    • 2014
  • This study was conducted with the aim of developing a venturi-type air supply system for a microbubble generator. In order to determine the influence of the varying geometry of the venturi tube on the flow characteristics, a computational fluid dynamics (CFD) simulation was performed using the commercial CFD software ANSYS CFX-15. Furthermore, in order to elucidate the effects of variation in major design dimensions such as the air supply hole size, position of holes, and number of holes on the air supply characteristics, two-phase multiflow CFD analysis was performed. The analysis results showed that the starting point of expansion on the venturi tube with 0.75 is the best hole position and that the air supply hole size and the number of holes are linearly proportional to the amount of air.

A Study on the Fluid Flow of Vortex Nozzle for Generating Micro-bubble (미세버블 발생용 보텍스 노즐의 유체유동에 대한 연구)

  • Yu, Seong-Hun;Park, Sang-Hee;Kang, Woo-Jin;Han, Seung-Wook
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.4_2
    • /
    • pp.637-644
    • /
    • 2022
  • In this study, the flow characteristics according to the shape of the vortex nozzle was studied by numerical analysis and the amount of microbubble generation was measured experimentally. The shape of the vortex nozzle is cylindrical, diffuser, and conical type. The axial fluid velocity in the induced tube gradually increased from the inlet to the outlet. In particular, the fluid velocity in the nozzle part increased rapidly. The velocity distribution of the fluid at the inlet of the induced tube showed that the flow rotates counterclockwise in the outer region and the inner center of the induced tube. At the outlet of the induced tube, the cylindrical and conical type showed rotational flow, and the diffuser type showed irregular turbulent flow. The dimensionless pressure ratio 𝜂 of the inner region of the induced tube was lower than that of the outer region. Also, 𝜂 near the outlet of the induced tube in cylindrical and conical type showed a similar tendency to the inlet area. At the outer region of inlet of induced tube, intense vorticity was observed on the wall and in lower region. At the inner region of inlet of induced tube, intense vorticity was observed on the inner wall of the induced tube and in the central region of the inlet of the induced tube. At the outlet of induced tube, in the case of the cylindrical and conical type, intense vorticity was observed near the inner wall, the diffuser type showed irregular strong vorticity inside the tube. The total number of bubbles measured was the most in the cylindrical type, and the microbubbles less than 50mm occurred the most in the conical type.