DOI QR코드

DOI QR Code

Development of Venturi System for Microbubble Generation

미세기포 생성을 위한 벤츄리 시스템 개발

  • Yun, Jeong Eui (Dept. of Mechatronics Engineering, Kangwon Nat'l Univ.) ;
  • Kim, Joo Ho (Dept. of Mechanical & Automation engineering, Kangwon Nat'l Univ.)
  • 윤정의 (강원대학교 메카트로닉스공학과) ;
  • 김주호 (강원대학교 대학원 기계자동화공학과)
  • Received : 2014.07.01
  • Accepted : 2014.08.11
  • Published : 2014.10.01

Abstract

This study was conducted with the aim of developing a venturi-type air supply system for a microbubble generator. In order to determine the influence of the varying geometry of the venturi tube on the flow characteristics, a computational fluid dynamics (CFD) simulation was performed using the commercial CFD software ANSYS CFX-15. Furthermore, in order to elucidate the effects of variation in major design dimensions such as the air supply hole size, position of holes, and number of holes on the air supply characteristics, two-phase multiflow CFD analysis was performed. The analysis results showed that the starting point of expansion on the venturi tube with 0.75 is the best hole position and that the air supply hole size and the number of holes are linearly proportional to the amount of air.

본 연구는 벤츄리 시스템을 미세기포 생성을 위한 공기공급 장치로 개발하는데 그 목표를 두고 수행하였다. 이를 위해 상용유동해석 프로그램인 ANSYS CFX-15를 사용한 전산 유동해석을 통해 기하학적 형상변화가 벤츄리 관 내 유동특성들에 미치는 영향을 규명하였다 그리고 공급공기를 공급하는 공기 공급관의 위치, 크기, 개수 등을 변수로 2-유체 유동 해석을 수행하여 이들 설계 값들이 공기 공급 특성에 미치는 효과를 규명하였다. 최종적으로 직경 비 ${\beta}=0.75$의 벤츄리 확대관이 시작되는 위치에 공기 공급 구멍을 설치할 경우 가장 많은 공기가 벤츄리 관으로 유입되는 것을 확인할 수 있었으며, 유입공기 공급구멍 개수 및 직경과 벤츄리 관 내 공급되는 공기량 사이에는 선형적인 관계가 성립됨을 확인하였다.

Keywords

References

  1. Kim, H. D., Lee, D. Y., Kim, Y. K., Jeong, W. T., Ahn, J. H. and Kim, K. C., 2011, "Numerical Simulation and Experimental Study on an Ejector System for VOC Recovery," Journal of Korean Society of Visualization, Vol. 9, No. 2, pp.54-60. https://doi.org/10.5407/JKSV.2011.9.2.054
  2. Yang, H. C. and Park, S. K., 2011, "Effect of Salinity on Dissolved Oxygen Characteristics in an Ejector-Aerator," Journal of the Korean Society of Marine Engineering, Vol. 35, No. 5, pp.640-646. https://doi.org/10.5916/jkosme.2011.35.5.640
  3. Park, S. K. and Yang, H. C., 2013, "Mixed Flow Characteristics of Aeration Process for Recirculation Aquaculture System Using Ejector," Trans. Korean Soc. Mech. Eng. B, Vol. 37, No. 9, pp. 847-854. https://doi.org/10.3795/KSME-B.2013.37.9.847
  4. Terasaka, K., Hirabayashi, A., Nishino, T., Fujioka, S. and Kobayashi, D., 2011, "Development of Microbubble Aerator for Waste Water Treatment Using Aerobic Activated Sludge," Chemical Engineering Science, Vol. 66, pp.3172-3179. https://doi.org/10.1016/j.ces.2011.02.043
  5. Sadatomi, M., Kawahara, A., Matsuura, H. and Shikatani, S., 2012, "Micro-bubble Generation Rate and Bubble Dissolution Rate into Water by a Simple Multi-fluid Mixer with Orifice and Porous Tube," Experimental Thermal and Fluid Science, Vol. 41, pp.23-30. https://doi.org/10.1016/j.expthermflusci.2012.03.002
  6. Akimi, S., Tomohiko, I., Toshihiko, Y. and Zensaku, K., 2003, "Laminarization of Micro-Bubble Containing Milky Bubbly Flow in a Pipe," 3rd Eropean-Japanese Flow Group Meering.
  7. Yanqi, S. and Wenquan, N., "Simulating the Effects of Structural Parameters on the Hydraulic Performances of Venturi Tube," Modeling and Simulation in Engineering, Vol. 2012, Article ID458368, 2012, 7 pages.
  8. Baylar, A., Ozkan, F. and Unsal, M., 2010, "Effects of Air Inlet Hole Diameter of Venturi Tube on Air Injection Rate," KSCE Journal of Civil Engineering, Vol. 14, No. 4, pp.489-492. https://doi.org/10.1007/s12205-010-0489-6