• Title/Summary/Keyword: Microbial viability

Search Result 90, Processing Time 0.031 seconds

Induction of Mitotic Arrest and Apoptosis by Diallyl Trisulfide in U937 Human Leukemia Cells (U937 인체혈구암세포에서 diallyl trisulfide에 의한 mitotic arrest와 apoptosis 유발)

  • Park, Hyun Soo;Lee, Jun Hyuk;Son, Byoung Yil;Choi, Byung Tae;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.23 no.5
    • /
    • pp.622-628
    • /
    • 2013
  • Diallyl trisulfide (DATS), one of the major organosulfur components of garlic (Allium sativum), has various biological effects such as anti-microbial and anti-cancer activities. However, the molecular mechanisms of growth inhibition related to cell cycle arrest are poorly understood. In this study, we investigated the effects of DATS on cell cycle progression in U937 human leukemia cells. Treatment with DATS in U937 cells resulted in inhibition of cell viability through G2/M arrest and apoptosis. DATS-induced G2/M arrest was associated with up-regulation of cyclin B1 and cyclin-dependent kinase 1 (CDK1). DATS also significantly increased levels of phospho-histone H3, which is a mitosis-specific marker, indicating that DATS induced mitotic arrest but not G2 arrest in U937 cells. DATS treatment also generated the reactive oxygen species (ROS) in U937 cells; however, pretreatment with N-acetyl-l-cysteine (NAC), a ROS scavenger, significantly attenuated DATS-induced mitotic arrest and apoptosis. Taken together, our data indicate that DATS exhibits anti-cancer effects through mitotic arrest and apoptosis in a ROS-dependent manner.

Production of fermented apple juice using Lactobacillus plantarum JBE245 isolated from Korean traditional Meju (메주에서 분리한 Lactobacillus plantarum JBE245를 이용한 사과 발효 음료 제조)

  • Heo, Jun;Park, Hae-Suk;Uhm, Tai-Boong
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.5
    • /
    • pp.445-453
    • /
    • 2016
  • Eighty-four strains of lactic acid bacteria were isolated from Korean fermented foods for the production of fermented apple juice. Among these strains, the JBE245 strain that showed rapid growth and food functionality was selected and identified as Lactobacillus plantarum. This strain reached the stationary phase after 24 h fermentation at $30^{\circ}C$ with $1.5{\times}10^8$ colony forming unit (CFU)/mL of viable cells, and maintained its viability levels even after 14 days of storage. During fermentation, the ${\alpha}-glucosidase$ inhibitory activity (40.4%), total polyphenol content (583.6 mg gallic acid equivalent (GAE)/mL), and 2,2-diphenyl-l-picryl-hydrazyl hydrate (DPPH) radical scavenging activity (52%) were increased. As judged by a sensory test, the overall preference for the fermented juice (4.22) was comparable to that for the unfermented juice (4.72), indicating that fermentation does not significantly affect the sensory characteristics of apple juice. Consequently, the fermented beverage containing L. plantarum JBE245 and apple juice is a promising functional health food.

Evaluation of Absorption and Release, Survival Efficiency and Recovery Rate of Transport Medium according to the CLSI M40-A2 Standard (CLSI M40-A2 기준에 따른 수송배지의 흡수 및 배출, 생존 효율, 회수율 평가)

  • Ha, Sung-Il;Suk, Hyun-Soo;Shin, Jeong-Seob;Heo, Woong;Park, Kang-Gyun;Park, Yeon-Joon
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.51 no.2
    • /
    • pp.164-170
    • /
    • 2019
  • The absorption and release capacities, survival efficiency, and recovery rates of five kinds of transport media were evaluated based on the swab elution method (Quantitative) of CLSI (Clinical and Laboratory Standards Institute) M40-A2. Liquid media showed mostly better results than semi-solid media in the three evaluations. The flocked swabs had better ability to absorption and discharge bacteria than the standard swabs. The liquid medium (S4) had the best survival efficiency. Pneumococcal strains with poor growth had a higher survival efficiency and recovery rate in liquid media (S4, S5). The results of microbial recovery showed that S. pyogenes met all the CLSI standards in all media. S. pneumoniae was inadequate in the semi- solid media (S2, S3) and all the remaining media met the criteria. H. influenzae was unsuitable in semi-solid media (S1, S3) and met the criteria in semi-solid medium (S2) and liquid medium (S4, S5). The viability of the H. influenzae, pneumococcal strain causing respiratory disease, was poor in most media. Overgrowth of P. aeruginosa was observed at room temperature. The combination of liquid medium and flocked swab confirmed the best results in the three evaluation methods.

Protective Effect of Betula Platyphylla on Ultraviolet B-irradiated HaCaT Keratinocytes (화피(樺皮) 에탄올 추출물의 Ultraviolet B로 자극한 피부 각질 세포 보호 작용)

  • Hag Soon Choi;Hyun Joo Kim;Hark Song Lee;Seung Won Paik;Ji Eun Kim;Yung Sun Song
    • The Journal of Korean Medicine
    • /
    • v.44 no.2
    • /
    • pp.119-131
    • /
    • 2023
  • Objectives: Betula Platyphylla(BP) has been used as a analgesic, anti-microbial, anti-oxidant drug in Eastern Asia. However, it is still unknown whether BP ethanol extract could exhibit the inhibitory activities against ultraviolet B(UVB)-induced skin injury on human keratinocytes, HaCaT cells. This study was aimed to investigate the protective activity of BP ethanol extract on UVB-irradiated skin injury in HaCaT cells. Methods: The skin injury model of HaCaT cells was established under UVB stimulation. HaCaT keratinocyte cells were pre-treated with BP ethanol extract for 1 h, and then stimulated with UVB. Then, the cells were harvested to measure the cell viability, production of reactive oxygen species(ROS), pro-inflammatory cytokines such as interleukin(IL) 1-beta, IL-6, and tumor necrosis factor(TNF)-𝛼, hyaluronidase, type 1 collagen, matrix metalloproteinase(MMP)s. In addition, we examined the mitogen activated protein kinases(MAPKs) and inhibitory kappa B alpha(I𝜅;-B𝛼) as inhibitory mechanisms of BP ethanol extract. Results: The treatment of BP ethanol extract inhibited the UVBinduced cell death and ROS production in HaCaT cells. BP ethanol extract treatment inhibited the UVB-induced increase of IL-1beta, IL-6, and TNF-𝛼. BP ethanol extract treatment inhibited the increase of hyaluronidase, MMP and decrease of collagen. BP ethanol extract treatment inhibited the activation of MAPKs and the degradation of I𝜅-B𝛼. Conclusions: Our result suggest that treatment of BP ethanol extract could inhibit the UVB-induced skin injury via deactivation of MAPKs and nuclear factor kappa B(NF-𝜅B) in HaCaT cells. This study could suggest that BP ethanol extract could be a beneficial agent to prevent skin damage or inflammation.

IPA and its precursors differently modulate the proliferation, differentiation, and integrity of intestinal epithelial cells

  • Shamila Ismael;Catarina Rodrigues ;Gilberto Maia Santos ;Ines Castela ;Ines Barreiros-Mota ;Maria Joao Almeida ;Conceicao Calhau ;Ana Faria ;Joao Ricardo Araujo
    • Nutrition Research and Practice
    • /
    • v.17 no.4
    • /
    • pp.616-630
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Indole-3-propionic acid (IPA) is a tryptophan-derived microbial metabolite that has been associated with protective effects against inflammatory and metabolic diseases. However, there is a lack of knowledge regarding the effects of IPA under physiological conditions and at the intestinal level. MATERIALS/METHODS: Human intestinal epithelial Caco-2 cells were treated for 2, 24, and/or 72 h with IPA or its precursors - indole, tryptophan, and propionate - at 1, 10, 100, 250, or 500 μM to assess cell viability, integrity, differentiation, and proliferation. RESULTS: IPA induced cell proliferation and this effect was associated with a higher expression of extracellular signal-regulated kinase 2 (ERK2) and a lower expression of c-Jun. Although indole and propionate also induced cell proliferation, this involved ERK2 and c-Jun independent mechanisms. On the other hand, both tryptophan and propionate increased cell integrity and reduced the expression of claudin-1, whereas propionate decreased cell differentiation. CONCLUSIONS: In conclusion, these findings suggested that IPA and its precursors distinctly contribute to the proliferation, differentiation, and barrier function properties of human intestinal epithelial cells. Moreover, the pro-proliferative effect of IPA in intestinal epithelial cells was not explained by its precursors and is rather related to its whole chemical structure. Maintaining IPA at physiological levels, e.g., through IPA-producing commensal bacteria, may be important to preserve the integrity of the intestinal barrier and play an integral role in maintaining metabolic homeostasis.

Anti-inflammatory effects of biorenovated Torreya nucifera extract in RAW264.7 cells induced by Cutibacterium acnes (여드름균에 의해 유도된 RAW264.7 세포에서 생물 전환된 비자나무 추출물의 항염증 효과)

  • Hyehyun Hong;Tae-Jin Park;Yu-Jung Lee;Byeong Min Choi;Seung-Young Kim
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.213-220
    • /
    • 2023
  • The most common skin disease, acne, often occurs in adolescence, but it is also detected/observed in adults due to air pollution and drug abuse. One of the causative agents of acne, Cutibacterium acnes (C. acnes) plays a role in the development of skin acne by inducing inflammatory mediators. Torreya nucifera (TN) is an evergreen tree of the family Taxaceae, having well reported antioxidant, anti-proliferative, liver protection, and nerve protection properties. Improvement of these bioactive properties of natural products is one of the purposes of natural product chemistry and pharmaceuticals. We believe biorenovation could be one improvement strategy that utilizes microbial metabolism to produce unique derivatives having enhanced bioactivity. Therefore, in this study, the C. acnes-induced RAW264.7 inflammation model was used to evaluate the anti-inflammatory activity of the biorenovated Torreya nucifera product (TNB). The results showed improved viability of TNB-treated cells compared to TN-treated cells in the concentration range of 50, 100, and 200 ㎍/mL. At non-toxic concentrations, TNB inhibited the production of nitric oxide and prostaglandin E2 by suppression of inducible nitric oxide synthase and cyclooxygenase-2 protein expression. TNB also attenuated the expression of interleukin-1β, interleukin-6, interleukin-8, and tumor necrosis factor-α induced by C. acnes. Furthermore, TNB inhibited the nuclear factor-κB signaling pathway, a transcription factor known to regulate inflammatory mediators. Based on these results, this study suggests the potential of using TNB as natural material for the treatment of acnes and thus, supporting our postulation of biorenovation as an bioactivity improvement strategy.

Mechanism Underlying a Proteasome Inhibitor, Lactacystin-Induced Apoptosis on SCC25 Human Tongue Squamous Cell Carcinoma Cells (사람혀편평상피세포암종세포에서 proteasome 억제제인 lactacystin에 의해 유도된 세포자멸사의 기전에 대한 연구)

  • Baek, Chul-Jung;Kim, Gyoo-Cheon;Kim, In-Ryoung;Lee, Seung-Eun;Kwak, Hyun-Ho;Park, Bong-Soo;Tae, Il-Ho;Ko, Myung-Yun;Ahn, Yong-Woo
    • Journal of Oral Medicine and Pain
    • /
    • v.34 no.3
    • /
    • pp.261-276
    • /
    • 2009
  • Lactacystin, a microbial natural product synthesized by Streptomyces, has been commonly used as a selective proteasome inhibitor in many studies. Proteasome inhibitors is known to be preventing the proliferation of cancer cells in vivo as well as in vitro. Furthermore, proteasome inhibitors, as single or combined with other anticancer agents, are suggested as a new class of potential anticancer agents. This study was undertaken to examine in vitro effects of cytotoxicity and growth inhibition, and the molecular mechanism underlying induction of apoptosis in SCC25 human tongue sqaumous cell carcinoma cell line treated with lactacystin. The viability of SCC25 cells, human normal keratinocytes (HaCaT cells) and human gingiva fibroblasts (HGF-1 cells), and the growth inhibition of SCC25 cells were assessed by MTT assay and clonogenic assay respectively. The hoechst staining, hemacolor staining and TUNEL staining were conducted to observe SCC25 cells undergoing apoptosis. SCC25 cells were treated with lactacystin, and Western blotting, immunocytochemistry, confocal microscopy, FAScan flow cytometry, MMP activity, and proteasome activity were performed. Lactacystin treatment of SCC25 cells resulted in a time- and does-dependent decrease of cell viability and a does-dependent inhibition of cell growth, and induced apoptotic cell death. Interestingly, lactacytin remarkably revealed cytotoxicity in SCC25 cells but not normal cells. And tested SCC25 cells showed several lines of apoptotic manifestation such as nuclear condensation, DNA fragmentation, the reduction of MMP and proteasome activity, the decrease of DNA contents, the release of cytochrome c into cytosol, the translocation of AIF and DFF40 (CAD) onto nuclei, the up-regulation of Bax, and the activation of caspase-7, caspase-3, PARP, lamin A/C and DFF45 (ICAD). Flow cytometric analysis revealed that lactacystin resulted in G1 arrest in cell cycle progression which was associated with up-regulation in the protein expression of CDK inhibitors, $p21^{WAF1/CIP1}$ and $p27^{KIP1}$. We presented data indicating that lactacystin induces G1 cell cycle arrest and apoptois via proteasome, mitochondria and caspase pathway in SCC25 cells. Therefore our data provide the possibility that lactacystin could be as a novel therapeutic strategy for human tongue squamous cell carcinoma.

Antioxidative and Antimicrobial Activities of Eriobotrya japonica Lindl. Leaf Extracts (비파 잎 추출물의 항산화 및 항균활성)

  • Lee, Kyoung-In;Kim, Sun-Min
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.3
    • /
    • pp.267-273
    • /
    • 2009
  • Antioxidative, antimicrobial activities and Raw 264.7 cell viability as cytotoxicity of various solvent extracts from leaf of Eriobotrya japonica Lindl. dried by different methods were investigated for processing as functional ingredient. In DPPH radical scavenging activity, RLE (80% EtOH extract of raw leaf) and FLE (80% EtOH extract of freeze-dried leaf) exhibited strong scavenging effect on $300{\mu}M$ DPPH radical solution (1.71 mg/mL and 2.11 mg/mL for RLE $SC_{50}$ and FLE $SC_{50}$). Also in nitric oxide scavenging activity, RLE and FLE showed strong activities (83.9% and 82.2% in 5 mg/mL sample concentration). Total phenolic compound contents of each extracts were found to be $73.7{\sim}215.4$ mg/g and RLE was showed the highest phenolic compound content. Also, total flavonoid contents were found to be $24.85{\sim}110.3$ mg/g and RLE was showed the highest flavonoid content. In antimicrobial activity, RLE was showed higher growth inhibition effect against all microbial strains. RLE, RLW (hot water extract of raw leaf), and FLW (hot water extract of freeze-dried leaf) exhibited strong antimicrobial activities against MRSA and S. aureus. In measurement of cytotoxicity by MTT assay, Raw 264.7 cell viabilities of 80% EtOH extracts showed better effect than water extracts. Especially viability of RLE was found be over 100% in every tested sample concentration.

Food Waste Composting by Using an Inoculum-Mixture Containing New Facultative Anaerobic Bacteria (신규 통성혐기성 세균으로 제조한 발효흙에 의한 음식물 쓰레기의 퇴비화)

  • Hwang, Kyo-Yeol;Lee, Jae-Yeon;Kim, Keun;Sung, Su-Il;Han, Sung-Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.9 no.1
    • /
    • pp.65-72
    • /
    • 2001
  • Four newly isolated bacteria from soil were used to manufacture microbial inoculum to compost food waste. The bacteria, GM103, V25, V31, and V35, were identified as Bacillus licheniformis, B. subtilis, B. stearothermophilius, and B, subtilis, respectively. The bacterial strains were efficient to degrade protein and starch and also able to inhibit the growth of plant pathogenic fungus Rhizopus stronifer. The GM103 showed distinct capability in degrading starch, but grow only aerobically. The other three bacterial strains. V25, V31, and V35, could grow both aerobically as well as anaerobically, in 10%(w/v) salt, at $50^{\circ}C$, and had good viability and survival rate in soil. These characteristics of the bacterial strains are very adquate in Korean food composting containing high concentration of salt, especially at home. By mixing the 4 bacterial culture broth with molasses, beet pulp, zeolite, The bacterial inoculum for food waste composting-BIOTOP-CLEAN-was made. The performance of food waste composting by the BIOTOP-CLEAN was compared with that by control(not treated) and HS(other demestic company's inoculum product for food waste composting). The maximum temperature of the food waste during the composting with the BIOTOP-CLEAN was $50^{\circ}C$, while those of the control and HS were $30^{\circ}C$ and $35^{\circ}C$, respectively. The BIOTOP-CLEAN gave the good smell and showed dark brown color, while the control gave bad smell and HS gave less bad smell. These indicates that the food waste composting by the BIOTOP-CLEAN had been well accomplished. The culture broth of V25, V31, V35 were sparyed to the plants of tomato, chinese cabbage, raddish, red pepper every month and the spraying the culture broth to these plant significantly improved the production yield of the crops, due to the control effect of the bacterial strains against the plant pathogens.

  • PDF

Optimization of Microbial Production of Ethanol form Carbon Monoxide (미생물을 이용한 일산화탄소로부터 에탄올 생산공정 최적화)

  • 강환구;이충렬
    • KSBB Journal
    • /
    • v.17 no.1
    • /
    • pp.73-79
    • /
    • 2002
  • The method to optimize the microbial production of ethanol from CO using Clostridium ljungdahlii was developed. The kinetic parameter study on CO conversion with Clostridium ljungdahlii was carried out and maximum CO conversion rate of 37.14 mmol/L-hr-O.D. and $K_{m}$ / of 0.9516 atm were obtained. It was observed that method of two stage fermentation, which consists of cell growth stage and ethanol production stage, was effective to produce ethanol. When pH was shifted from 5.5 to 4.5 and ammonium solution was supplied to culture media as nitrogen source at ethanol production stage, the concentration of ethanol produced was increased 20 times higher than that without shift. Ethanol production from CO in a fermenter with Clostridium ljungdahlii was optimized and the concentration of ethanol produced was 45 g/L and maximun ethanol productivity was 0.75 g ethanol/L-hr.