• Title/Summary/Keyword: Microbial safety

Search Result 837, Processing Time 0.026 seconds

Effect of Chlorine Dioxide and Sodium Hypochlorite Treatment on the Reduction of Foodborne Pathogen in Korean Chive (영양부추에서 이산화염소와 차아염소산나트륨 처리의 식중독세균 저감화 효과)

  • Yun, Bohyun;Lee, Hyo-Sup;An, Hyun Mi;Kim, Won-Il;Kim, Hwang-Yong;Han, Sanghyun;Kim, Hyun-Ju;Ryu, Jae-Gee;Kim, Se-Ri
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.2
    • /
    • pp.154-162
    • /
    • 2017
  • The purpose of this study was to investigate the microbial reduction effect of chlorine dioxide and sodium hypochlorite in Korean chive. Korean chive inoculated with foodborne pathogens at the level of approximately 7~8 log CFU/g was treated with various concentration of chlorine dioxide (3, 4, 10, 25 and 100 ppm and sodium hypochlorite (100, 150 and 200 ppm) for 5, 10, 30 and 60 minutes. The treatment of 150 ppm sodium hypochlorite and 50 ppm chlorine dioxide for 30 min reduced the number of total bacteria in Korean chive up to 2.0 log CFU/g. Reduction of microbial levels was observed for all concentrations of sanitizers but their effectiveness did not correspond to their concentration. Due to the quality degradation, 50 ppm chlorine dioxide was not appropriate for Korean chive. Most effective reduction of microbial levels was observed when Korean chive were treated with 9 times more sanitizer in volume. For field application, the treatment of 150 ppm sodium hypochlorite showed 2.7 and 4.0 log CFU/g reductions for numbers of total bacteria and coliforms, respectively. Therefore, washing with sodium hypochlorite of a ratio of 1:9 (Korean chive : 150 ppm sodium hypochlorite (w/v)) for 30 minutes can reduce the number of foodborne pathogen in Korean chive.

Characterization of Nivalenol-Producing Fusarium asiaticum That Causes Cereal Head Blight in Korea

  • Jang, Ja Yeong;Baek, Seul Gi;Choi, Jung-Hye;Kim, Sosoo;Kim, Jeomsoon;Kim, Da-Woon;Yun, Sung-Hwan;Lee, Theresa
    • The Plant Pathology Journal
    • /
    • v.35 no.6
    • /
    • pp.543-552
    • /
    • 2019
  • Fusarium asiaticum of the F. graminearum species complex causes head blight in small-grain cereals. The nivalenol (NIV) chemotypes of F. asiaticum is more common than the deoxynivalenol (DON) chemotypes of F. asiaticum or F. graminearum in Korea. To understand the prevalence of F. asiaticum-NIV in Korean cereals, we characterized the biological traits of 80 cereal isolates of F. asiaticum producing NIV or 3-acetyl-deoxynivalenol (3-ADON), and 54 F. graminearum with 3-ADON or 15-acetyl-deoxynivalenol (15-ADON). There was no significant difference in mycelial growth between the chemotypes, but F. asiaticum isolates grew approximately 30% faster than F. graminearum isolates on potato dextrose agar. Sexual and asexual reproduction capacities differed markedly between the two species. Both chemotypes of F. graminearum (3-ADON and 15-ADON) produced significantly higher numbers of perithecia and conidia than F. asiaticum-NIV. The highest level of mycotoxins (sum of trichothecenes and zearalenone) was produced by F. graminearum-3-ADON on rice medium, followed by F. graminearum-15-ADON, F. asiaticum-3-ADON, and F. asiaticum-NIV. Zearalenone levels were correlated with DON levels in some chemotypes, but not with NIV levels. Disease assessment on barley, maize, rice, and wheat revealed that both F. asiaticum and F. graminearum isolates were virulent toward all crops tested. However, there is a tendency that virulence levels of F. asiaticum-NIV isolates on rice were higher than those of F. graminearum isolates. Taken together, the phenotypic traits found among the Korean F. asiaticum-NIV isolates suggest an association with their host adaptation to certain environments in Korea.

Isolation of Bacteriophages Which Can Infect Pectobacteirum carotovorum subsp. carotovorum (Pectobacterium carotovorum subsp. carotovorum을 침해하는 박테리오파지의 분리)

  • Jee, Sam-Nyu;Malhotra, Shweta;Roh, Eun-Jung;Jung, Kyu-Suk;Lee, Dong-Whan;Choi, Jae-Hyuk;Yoon, Jong-Chul;Heu, Sung-Gi
    • Research in Plant Disease
    • /
    • v.18 no.3
    • /
    • pp.225-230
    • /
    • 2012
  • Bacteriophages of Pectobacterium carotovorum subsp. carotovorum which causes soft rot on diverse vegetables had been isolated from 6 major Chinese cabbage cultivation areas in Korea. In order to isolate bacteriophages, total 15 different strains of P. carotovorum subsp. carotovorum isolated from nation-wide of Korea had been used as a host. When we tested 30 different soil samples individually from Pyeongchang and Taebaek with 15 different strains as a host, Taebek soil samples showed bacteriophage plaques with almost all different indicator strains but Pyeongchang soil samples showed plaques only with P. carotovorum subsp. carotovorum Pcc2 and Pcc3 strains. Especially, P. carotovorum subsp. carotovorum Pcc3 strain was able to produce plaques with almost all soil samples. Thus, this strain can be used as an indicator strain for P. carotovorum subsp. carotovorum bacteriophage screening. Electron microscope observation revealed P. carotovorum subsp. carotovorum bacteriophages isolated in Korea were belonged to three different families, Myoviridae, Siphoviridae and Podoviridae in order Caudovirales.

Experimental study on solidification of uranium tailings by microbial grouting combined with electroosmosis

  • Jinxiang Deng;Mengjie Li;Yakun Tian;Lingling Wu;Lin Hu;Zhijun Zhang;Huaimiao Zheng
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4527-4542
    • /
    • 2023
  • The present microbial reinforcement of rock and soil exhibits limitations, such as uneven reinforcement effectiveness and low calcium carbonate generation rate, resulting in limited solidification strength. This study introduces electroosmosis as a standard microbial grouting reinforcement technique and investigates its solidification effects on microbial-reinforced uranium tailings. The most effective electroosmosis effect on uranium tailings occurs under a potential gradient of 1.25 V/cm. The findings indicate that a weak electric field can effectively promote microbial growth and biological activity and accelerate bacterial metabolism. The largest calcium carbonate production occurred under the gradient of 0.5 V/cm, featuring a good crystal combination and the best cementation effect. Staged electroosmosis and electrode conversion efficiently drive the migration of anions and cations. Under electroosmosis, the cohesion of uranium tailings reinforced by microorganisms increased by 37.3% and 64.8% compared to those reinforced by common microorganisms and undisturbed uranium tailings, respectively. The internal friction angle is also improved, significantly enhancing the uniformity of reinforcement and a denser and stronger microscopic structure. This research demonstrates that MICP technology enhances the solidification effects and uniformity of uranium tailings, providing a novel approach to maintaining the safety and stability of uranium tailings dams.

Efficacy of Commercial Sanitizers for the Inactivation of Listeria monocytogenes on the Processing Equipment for Enoki Mushrooms (팽이버섯 재배 현장에서 Listeria monocytogenes의 성장을 억제하기 위한 살균 처리 기술 개발)

  • Kyung Min Park;Su-Bin Lee;Do-Young Jung;Song-Yi Choi;Injun Hwang;Se-Ri Kim
    • Journal of Food Hygiene and Safety
    • /
    • v.38 no.6
    • /
    • pp.508-516
    • /
    • 2023
  • The consumption of enoki mushrooms has been associated with cases of listeriosis produced by Listeria monocytogenes, highlighting the significance of sanitizing food-contact surface, such as the velcro used in welding processing of enoki mushrooms, to ensure microbial safety. We investigated the inhibitory activity of nine chemical disinfectants at regular concentrations against L. monocytogenes isolated from a mushroom farm environment. The bacterial suspension was prepared in phosphate buffered saline and mushroom extract broth and inoculated onto the velcro surface. After inoculation, most disinfectants reduced the initial 8 log CFU/coupon concentration by less than 2 log CFU/coupon during a 5-min treatment. Slightly acidic hypochlorous water showed a reduction of approximately 4 log CFU/coupon when tested for more than 30 min at the maximum allowable concentration of 200 mg/L. Sodium hypochlorite solution showed a reduction of approximately 5 log CFU/coupon when used at 100 mg/L for 60 min. Peracetic acid, at the maximum allowable concentration of 300 mg/L, showed the most effective reduction of 5 log CFU/coupon or more when the surface was treated with 37.5 mg/L for 30 min. These results indicate that peracetic acid can be used as the disinfectant strategy to control cross-contamination of L. monocytogenes on the velcro surface of plastic wrappers used in the welding processing of enoki mushrooms.

Effect of Enterotoxigenic Escherichia coli on Microbial Communities during Kimchi Fermentation

  • Lee, Woojung;Choi, Hyo Ju;Zin, Hyunwoo;Kim, Eiseul;Yang, Seung-Min;Hwang, Jinhee;Kwak, Hyo-Sun;Kim, Soon Han;Kim, Hae-Yeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.11
    • /
    • pp.1552-1558
    • /
    • 2021
  • The diverse microbial communities in kimchi are dependent on fermentation period and temperature. Here, we investigated the effect of enterotoxigenic Escherichia coli (ETEC) during the fermentation of kimchi at two temperatures using high-throughput sequencing. There were no differences in pH between the control group, samples not inoculated with ETEC, and the ETEC group, samples inoculated with ETEC MFDS 1009477. The pH of the two groups, which were fermented at 10 and 25℃, decreased rapidly at the beginning of fermentation and then reached pH 3.96 and pH 3.62. In both groups, the genera Lactobacillus, Leuconostoc, and Weissella were predominant. Our result suggests that microbial communities during kimchi fermentation may be affected by the fermentation parameters, such as temperature and period, and not enterotoxigenic E. coli (ETEC).

Raman Chemical Imaging Technology for Food and Agricultural Applications

  • Qin, Jianwei;Kim, Moon S.;Chao, Kuanglin;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • v.42 no.3
    • /
    • pp.170-189
    • /
    • 2017
  • Purpose: This paper presents Raman chemical imaging technology for inspecting food and agricultural products. Methods The paper puts emphasis on introducing and demonstrating Raman imaging techniques for practical uses in food analysis. Results & Conclusions: The main topics include Raman scattering principles, Raman spectroscopy measurement techniques (e.g., backscattering Raman spectroscopy, transmission Raman spectroscopy, and spatially offset Raman spectroscopy), Raman image acquisition methods (i.e., point-scan, line-scan, and area-scan methods), Raman imaging instruments (e.g., excitation sources, wavelength separation devices, detectors, imaging systems, and calibration methods), and Raman image processing and analysis techniques (e.g., fluorescence correction, mixture analysis, target identification, spatial mapping, and quantitative analysis). Raman chemical imaging applications for food safety and quality evaluation are also reviewed.

Analyses of Microbiological Contamination in Cultivation and Distrubution Stage of Tomato and Evaluation of Microbial Growth in Tomato Extract (토마토의 생산·유통단계에서 유해미생물 오염 및 추출물에서 미생물 증식)

  • Yun, Hyejeong;Park, Kyeonghun;Ryu, Kyoung-Yul;Kim, Byung Seok
    • Journal of Food Hygiene and Safety
    • /
    • v.28 no.2
    • /
    • pp.174-180
    • /
    • 2013
  • This study investigated the microbiological contamination of tomato in cultivation and distribution stage. Growth of Escherichia coli O157:H7 and Listeria monocytogens examined in tomato extracts (0.1, 1.0, and 10.0%) and incubation temperatures (5, 15, 25, and $35^{\circ}C$). In cultivation stage of tomato, total aerobic bacteria were 7.77 log CFU/g in gloves of APC (Agricultural Products Processing Center) worker and Bacillus cereus were 0.33 log CFU/g at nutrient tank, respectively. And Staphylococcus aureus, Salmonella spp., were not detected. After APC stage, total aerobic bacteria were significantly higher compared with before-APC stage. Among of general, pesticide-free and organic produce in tomato were no significant difference in microbial contamination. Coliforms of tomato in small vinyl package were significantly higher when compared to tomato in whole boxes package. There was no significant difference in bacteria count between unwashed tomato and washed tomato using tap water for one minute. The growth of E. coli O157:H7 and L. monocytogens in tomato extracts were decreased significantly as the concentration increased, and the microbial population was reached the lowest point during storage in 10% tomato extracts concentration for 72h at $5^{\circ}C$. However, the population of E. coli O157:H7 and L. monocytogens were gradually increased at 7.33~8.51 and 7.73~8.60 log CFU/ml during storage at $15{\sim}35^{\circ}C$ for 72h, respectively.

Mathematical modeling of growth of Escherichia coli strain RC-4-D isolated from red kohlrabi sprout seeds (적콜라비 새싹채소 종자에서 분리한 Escherichia coli strain RC-4-D의 생장예측모델)

  • Choi, Soo Yeon;Ryu, Sang Don;Park, Byeong-Yong;Kim, Se-Ri;Kim, Hyun-Ju;Lee, Seungdon;Kim, Won-Il
    • Food Science and Preservation
    • /
    • v.24 no.6
    • /
    • pp.778-785
    • /
    • 2017
  • This study was conducted to develop a predictive model for the growth of Escherichia coli strain RC-4-D isolated from red kohlrabi sprout seeds. We collected E. coli kinetic growth data during red kohlrabi seed sprouting under isothermal conditions (10, 15, 20, 25, and $30^{\circ}C$). Baranyi model was used as a primary order model for growth data. The maximum growth rate (${\mu}max$) and lag-phase duration (LPD) for each temperature (except for $10^{\circ}C$ LPD) were determined. Three kinds of secondary models (suboptimal Ratkowsky square-root, Huang model, and Arrhenius-type model) were compared to elucidate the influence of temperature on E. coli growth rate. The model performance measures for three secondary models showed that the suboptimal Huang square-root model was more suitable in the accuracy (1.223) and the suboptimal Ratkowsky square-root model was less in the bias (0.999), respectively. Among three secondary order model used in this study, the suboptimal Ratkowsky square-root model showed best fit for the secondary model for describing the effect of temperature. This model can be utilized to predict E. coli behavior in red kohlrabi sprout production and to conduct microbial risk assessments.

Profiles of Toxin Genes and Antibiotic Susceptibility of Bacillus cereus Isolated from Perilla Leaf and Cultivation Areas (들깻잎과 생산환경에서 분리한 Bacillus cereus의 독소 유전자와 항생제 감수성 분석)

  • Kim, Se-Ri;Lee, Ji-Young;Lee, Seo-Hyun;Ryu, Kyoung-Yul;Park, Kyeong-Hun;Kim, Byung-Seok;Yoon, Yo-Han;Shim, Won-Bo;Kim, Kyoung-Yul;Ha, Sang-Do;Yun, Jong-Chul;Chung, Duck-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.2
    • /
    • pp.134-141
    • /
    • 2011
  • Two-hundred Bacillus cereus isolated from perilla leaf cultivation areas in Miryang, Korea were investigated for toxin genes and antibiotic susceptibility. Toxigenic patterns of isolates were identified to be 11 groups through toxin gene profiles. 21% of strains isolated from the perilla leaves had both enterotoxin and emetic toxin. Toxin genes entFM (100%), nheA (100%) and hblA, C, D (65.5%) were frequently found in the perilla leaves, whereas EM (21.0%) was less common. Most isolates were susceptible to 10 antibiotics, but they were highly resistant to penicillin (100%), ampicillin (100%), oxacillin (94.9%), amoxicillin-clavulanic acid (95.6%), cefazolin (78.2%), and rifampicin (58.0%). These results indicate that food-borne outbreak caused by B. cereus might lead to diarrhea and emetic syndromes.