Browse > Article
http://dx.doi.org/10.5423/PPJ.OA.06.2019.0168

Characterization of Nivalenol-Producing Fusarium asiaticum That Causes Cereal Head Blight in Korea  

Jang, Ja Yeong (Microbial Safety Team, National Institute of Agricultural Sciences)
Baek, Seul Gi (Microbial Safety Team, National Institute of Agricultural Sciences)
Choi, Jung-Hye (Microbial Safety Team, National Institute of Agricultural Sciences)
Kim, Sosoo (Microbial Safety Team, National Institute of Agricultural Sciences)
Kim, Jeomsoon (Microbial Safety Team, National Institute of Agricultural Sciences)
Kim, Da-Woon (Department of Medical Biotechnology, Soonchunhyanag University)
Yun, Sung-Hwan (Department of Medical Biotechnology, Soonchunhyanag University)
Lee, Theresa (Microbial Safety Team, National Institute of Agricultural Sciences)
Publication Information
The Plant Pathology Journal / v.35, no.6, 2019 , pp. 543-552 More about this Journal
Abstract
Fusarium asiaticum of the F. graminearum species complex causes head blight in small-grain cereals. The nivalenol (NIV) chemotypes of F. asiaticum is more common than the deoxynivalenol (DON) chemotypes of F. asiaticum or F. graminearum in Korea. To understand the prevalence of F. asiaticum-NIV in Korean cereals, we characterized the biological traits of 80 cereal isolates of F. asiaticum producing NIV or 3-acetyl-deoxynivalenol (3-ADON), and 54 F. graminearum with 3-ADON or 15-acetyl-deoxynivalenol (15-ADON). There was no significant difference in mycelial growth between the chemotypes, but F. asiaticum isolates grew approximately 30% faster than F. graminearum isolates on potato dextrose agar. Sexual and asexual reproduction capacities differed markedly between the two species. Both chemotypes of F. graminearum (3-ADON and 15-ADON) produced significantly higher numbers of perithecia and conidia than F. asiaticum-NIV. The highest level of mycotoxins (sum of trichothecenes and zearalenone) was produced by F. graminearum-3-ADON on rice medium, followed by F. graminearum-15-ADON, F. asiaticum-3-ADON, and F. asiaticum-NIV. Zearalenone levels were correlated with DON levels in some chemotypes, but not with NIV levels. Disease assessment on barley, maize, rice, and wheat revealed that both F. asiaticum and F. graminearum isolates were virulent toward all crops tested. However, there is a tendency that virulence levels of F. asiaticum-NIV isolates on rice were higher than those of F. graminearum isolates. Taken together, the phenotypic traits found among the Korean F. asiaticum-NIV isolates suggest an association with their host adaptation to certain environments in Korea.
Keywords
cereal; chemotype; head blight; mycotoxin; pathogenicity;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Maier, F. J., Miedaner, T., Hadeler, B., Felk, A., Salomon, S., Lemmens, M., Kassner, H. and Schafer, W. 2006. Involvement of trichothecenes in fusarioses of wheat, barley and maize evaluated by gene disruption of the trichodiene synthase (Tri5) gene in three field isolates of different chemotype and virulence. Mol. Plant Pathol. 7:449-461.   DOI
2 Nash, S. M. and Snyder, W. C. 1962. Quantitative estimations by plate counts of propagules of the Bean root rot Fusarium in field soils. Phytopathology 52:567-572.
3 Aoki, T., Ward, T. J., Kistler, H. C. and O'Donnell, K. 2012. Systematics, phylogeny and trichothecene mycotoxin potential of Fusarium head blight cereal pathogens. Mycotoxins 62:91-102.   DOI
4 Bowden, R. L. and Leslie, J. F. 1999. Sexual recombination in Gibberella zeae. Phytopathology 89:182-188.   DOI
5 Chun, J. H. 1963. Epidemiological survey of human mycotoxicosis caused by scabby cereals. In: Research report on wheat and barley scab, ed. by Republic of Korea, pp. 385-507. Ministry of Agriculture and Forestry, Seoul, Korea (in Korean).
6 Chung, H. S. 1975. Cereal scab causing mycotoxicoses in Korea and present status of mycotoxin researches. Korean. J. Mycol. 3:31-36.
7 Del Ponte, E. M., Spolti, P., Ward, T. J., Gomes, L. B., Nicolli, C. P., Kuhnem, P. R., Silva, C. N. and Tessmann, D. J. 2015. Regional and field-specific factors affect the composition of fusarium head blight pathogens in subtropical no-till wheat agroecosystem of Brazil. Phytopathology 105:246-254.   DOI
8 Desjardins, A. E. 2006. Fusarium mycotoxins: chemistry, genetics and biology. American Phytopathological Society, St. Paul, MN, USA. 268 pp.
9 Nicolli, C. P., Machado, F. J., Spolti, P. and Del Ponte, E. M. 2018. Fitness traits of deoxynivalenol and nivalenol-producing Fusarium graminearum species complex strains from wheat. Plant Dis. 102:1341-1347.   DOI
10 O'Donnell, K., Ward, T. J., Geiser, D. M., Kistler, H. C. and Aoki, T. 2004. Genealogical concordance between the mating type locus and seven other nuclear genes supports formal recognition of nine phylogenetically distinct species within the Fusarium graminearum clade. Fungal Genet. Biol. 41:600-623.   DOI
11 Proctor, R. H., Desjardins, A. E., McCormick, S. P., Plattner, R. D., Alexander, N. J. and Brown, D. W. 2002. Genetic analysis of the role of trichothecene and fumonisin mycotoxins in the virulence of Fusarium. Eur. J. Plant Pathol. 108:691-698.   DOI
12 Desjardins, A. E. and Proctor, R. H. 2011. Genetic diversity and trichothecene chemotypes of the Fusarium graminearum clade isolated from maize in Nepal and identification of a putative new lineage. Fungal Biol. 115:38-48.   DOI
13 Puri, K. D., Saucedo, E. S. and Zhong, S. 2012. Molecular characterization of Fusarium head blight pathogens sampled from a naturally infected disease nursery used for wheat breeding programs in China. Plant Dis. 96:1280-1285.   DOI
14 Qui, J., Xu, J. and Shi, J. 2014. Molecular characterization of the Fusarium graminearum species complex in Eastern China. Eur. J. Plant Pathol. 139:811-823.   DOI
15 Shin, S., Son, J.-H., Park, J.-C., Kim, K.-H., Yoon, Y., Cheong, Y.-K., Kim, K.-H., Hyun, J.-N., Park, C. S., Dill-Macky, R. and Kang, C.-S. 2018. Comparative pathogenicity of Fusarium graminearum isolates from wheat kernels in Korea. Plant Pathol. J. 34:347-355.   DOI
16 Starkey, D. E., Ward, T. J., Aoki, T., Gale, L. R., Kistler, H. C., Geiser, D. M., Suga, H., Toth, B., Varga, J. and O'Donnell, K. 2007. Global molecular surveillance reveals novel Fusarium head blight species and trichothecene toxin diversity. Fungal Genet. Biol. 44:1191-1204.   DOI
17 Gale, L. R., Harrison, S. A., Ward, T. J., O'Donnell, K., Milus, E. A., Gale, S. W. and Kistler, H. C. 2011. Nivalenol-type populations of Fusarium graminearum and F. asiaticum are prevalent on wheat in southern Louisiana. Phytopathology 101:124-134.   DOI
18 Gomes, L. B., Ward, T. J., Badiale-Furlong, E. and Del Ponte, E. M. 2015. Species composition, toxigenic potential and pathogenicity of Fusarium graminearum species complex isolates from southern Brazilian rice. Plant Pathol. 64:980-987.   DOI
19 Goswami, R. S. and Kistler, H. C. 2004. Heading for disaster: Fusarium graminearum on cereal crops. Mol. Plant Pathol. 5:515-525.   DOI
20 Groth, J. V., Ozmon, E. A. and Busch, R. H. 1999. Repeatability and relationship of incidence and severity measures of scab of wheat caused by Fusarium graminearum in inoculated nurseries. Plant Dis. 83:1033-1038.   DOI
21 Joo, H. J., Kim, H.-Y., Kim, L.-H., Lee, S., Ryu, J.-G. and Lee, T. 2015. A Brevibacillus sp. antagonistic to mycotoxigenic Fusarium spp. Biol. Control 87:64-70.   DOI
22 Karugia, G. W., Suga, H., Gale, L. R., Nakajima, T., Tomimura, K. and Hyakumachi, M. 2009. Population structure of the Fusarium graminearum species complex from a single Japanese wheat field sampled in two consecutive years. Plant Dis. 93:170-174.   DOI
23 Lee, J., Chang, I. Y., Kim, H., Yun, S. H., Leslie, J. F. and Lee, Y. W. 2009. Genetic diversity and fitness of Fusarium graminearum populations from rice in Korea. Appl. Environ. Microbiol. 75:3289-3295.   DOI
24 Lee, S.-H., Lee, J.-K., Nam, Y.-J., Lee, S.-H., Ryu, J.-G. and Lee, T. 2010. Population structure of Fusarium graminearum from maize and rice in 2009 in Korea. Plant Pathol. J. 26:321-327.   DOI
25 Suga, H., Karugia, G. W., Ward, T., Gale, L. R., Tomimura, K., Nakajima, T., Miyasaka, A., Koizumi, S., Kageyama, K. and Hyakumachi, M. 2008. Molecular characterization of the Fusarium graminearum species complex in Japan. Phytopathology 98:159-166.   DOI
26 Tancic, S., Stankovic, S., Levic, J. and Krnjaja, V. 2015. Correlation of deoxynivalenol and zearalenone production by Fusarium species originating from wheat and maize grain. Pestic. Phytomed. 30:99-105.   DOI
27 van der Lee, T., Zhang, H., Diepeningen, A. and Waalwijk, C. 2015. Biogeography of Fusarium graminearum species complex and chemotypes: a review. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 32:453-460.   DOI
28 Ward, T. J., Clear, R. M., Rooney, A. P., O'Donnell, K., Gaba, D., Patrick, S., Starkey, D. E., Gilbert, J., Geiser, D. M. and Nowicki, T. W. 2008. An adaptive evolutionary shift in Fusarium head blight pathogen populations is driving the rapid spread of more toxigenic Fusarium graminearum in North America. Fungal Genet. Biol. 45:473-484.   DOI
29 Yli-Mattila, T. 2010. Ecology and evolution of toxigenic Fusarium species in cereals in northern Europe and Asia. J. Plant Pathol. 92:7-18.
30 Zhang, H., van der Lee, T., Waalwijk, C., Chen, W., Xu, J., Xu, J., Zhang, Y. and Feng, J. 2012. Population analysis of the Fusarium graminearum species complex from wheat in China show a shift to more aggressive isolates. PLoS ONE 7:e31722.   DOI
31 Zhang, H., Zhang, Z., van der Lee, T., Chen, W. Q., Xu, J., Xu, J. S., Yang, L., Yu, D., Waalwijk, C. and Feng, J. 2010. Population genetic analyses of Fusarium asiaticum populations from barley suggest a recent shift favoring 3ADON producers in southern China. Phytopathology 100:328-336.   DOI
32 Lee, S., Lee, T., Kim, M., Yu, O., Im, H. and Ryu, J.-G. 2013. Survey on contamination of Fusarium mycotoxins in 2011-harvested rice and its by-products from rice processing complexes in Korea. Res. Plant Dis. 19:259-264 (in Korean).   DOI
33 Lee, T., Han, Y.-K., Kim, K.-H., Yun, S.-H. and Lee, Y.-W. 2002. Tri13 and Tri7 determine deoxynivalenol- and nivalenolproducing chemotypes of Gibberella zeae. Appl. Environ. Microbiol. 68:2148-2154.   DOI
34 Lee, T., Paek, J.-S., Lee, K. A., Lee, S., Choi, J.-H., Ham, H., Hong, S. K. and Ryu, J.-G. 2016. Occurrence of toxigenic Fusarium vorosii among small grain cereals in Korea. Plant Pathol. J. 32:407-413.   DOI
35 Lee, U. S., Jang, H. S., Tanaka, T., Hasegawa, A., Oh, Y. J. and Ueno, Y. 1985. The coexistence of the Fusarium mycotoxins nivalenol, deoxynivalenol and zearalenone in Korean cereals harvested in 1983. Food Addit. Contam. 2:185-192.   DOI
36 Leslie, J. F. and Summerell, B. A. 2006. The Fusarium laboratory manual. Blackwell Publishing, Ames, IA, USA. 388 pp.
37 Liu, Y.-Y., Sun, H.-Y., Li, W., Xia, Y.-L., Deng, Y.-Y., Zhang, A.-X. and Chen, H.-G. 2017. Fitness of three chemotypes of Fusarium graminearum species complex in major winter wheatproducing areas of China. PLoS ONE 12:e0174040.   DOI