• 제목/요약/키워드: Microbial profiling

검색결과 57건 처리시간 0.028초

RNA-seq profiling of skin in temperate and tropical cattle

  • Morenikeji, Olanrewaju B.;Ajayi, Oyeyemi O.;Peters, Sunday O.;Mujibi, Fidalis D.;De Donato, Marcos;Thomas, Bolaji N.;Imumorin, Ikhide G.
    • Journal of Animal Science and Technology
    • /
    • 제62권2호
    • /
    • pp.141-158
    • /
    • 2020
  • Skin is a major thermoregulatory organ in the body controlling homeothermy, a critical function for climate adaptation. We compared genes expressed between tropical- and temperate-adapted cattle to better understand genes involved in climate adaptation and hence thermoregulation. We profiled the skin of representative tropical and temperate cattle using RNA-seq. A total of 214,754,759 reads were generated and assembled into 72,993,478 reads and were mapped to unique regions in the bovine genome. Gene coverage of unique regions of the reference genome showed that of 24,616 genes, only 13,130 genes (53.34%) displayed more than one count per million reads for at least two libraries and were considered suitable for downstream analyses. Our results revealed that of 255 genes expressed differentially, 98 genes were upregulated in tropically-adapted White Fulani (WF; Bos indicus) and 157 genes were down regulated in WF compared to Angus, AG (Bos taurus). Fifteen pathways were identified from the differential gene sets through gene ontology and pathway analyses. These include the significantly enriched melanin metabolic process, proteinaceous extracellular matrix, inflammatory response, defense response, calcium ion binding and response to wounding. Quantitative PCR was used to validate six representative genes which are associated with skin thermoregulation and epithelia dysfunction (mean correlation 0.92; p < 0.001). Our results contribute to identifying genes and understanding molecular mechanisms of skin thermoregulation that may influence strategic genomic selection in cattle to withstand climate adaptation, microbial invasion and mechanical damage.

Molecular Profiling of Rhizosphere Bacterial Communities Associated with Prosopis juliflora and Parthenium hysterophorus

  • Jothibasu, K.;Chinnadurai, C.;Sundaram, S.P.;Kumar, K.;Balachandar, D.
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권3호
    • /
    • pp.301-310
    • /
    • 2012
  • Prosopis juliflora and Parthenium hysterophorus are the two arid, exotic weeds of India that are characterized by distinct, profuse growth even in nutritionally poor soils and environmentally stressed conditions. Owing to the exceptional growth nature of these two plants, they are believed to harbor some novel bacterial communities with wide adaptability in their rhizosphere. Hence, in the present study, the bacterial communities associated with the rhizosphere of Prosopis and Parthenium were characterized by clonal 16S rRNA gene sequence analysis. The culturable microbial counts in the rhizosphere of these two plants were higher than bulk soils, possibly influenced by the root exudates of these two plants. The phylogenetic analysis of V1_V2 domains of the 16S rRNA gene indicated a wider range of bacterial communities present in the rhizosphere of these two plants than in bulk soils and the predominant genera included Acidobacteria, Gammaproteobacteria, and Bacteriodetes in the rhizosphere of Prosopis, and Acidobacteria, Betaproteobacteria, and Nitrospirae in the Parthenium rhizosphere. The diversity of bacterial communities was more pronounced in the Parthenium rhizosphere than in the Prosopis rhizosphere. This culture-independent bacterial analysis offered extensive possibilities of unraveling novel microbes in the rhizospheres of Prosopis and Parthenium with genes for diverse functions, which could be exploited for nutrient transformation and stress tolerance in cultivated crops.

Dietary Supplementation with Raspberry Extracts Modifies the Fecal Microbiota in Obese Diabetic db/db Mice

  • Garcia-Mazcorro, Jose F.;Pedreschi, Romina;Chew, Boon;Dowd, Scot E.;Kawas, Jorge R.;Noratto, Giuliana
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권8호
    • /
    • pp.1247-1259
    • /
    • 2018
  • Raspberries are polyphenol-rich fruits with the potential to reduce the severity of the clinical signs associated with obesity, a phenomenon that may be related to changes in the gut microbiota. The aim of this study was to investigate the effect of raspberry supplementation on the fecal microbiota using an in vivo model of obesity. Obese diabetic db/db mice were used in this study and assigned to two experimental groups (with and without raspberry supplementation). Fecal samples were collected at the end of the supplementation period (8 weeks) and used for bacterial 16S rRNA gene profiling using a MiSeq instrument (Illumina). QIIME 1.8 was used to analyze the 16S data. Raspberry supplementation was associated with an increased abundance of Lachnospiraceae (p = 0.009), a very important group for gut health, and decreased abundances of Lactobacillus, Odoribacter, and the fiber degrader S24-7 family as well as unknown groups of Bacteroidales and Enterobacteriaceae (p < 0.05). These changes were enough to clearly differentiate bacterial communities accordingly to treatment, based on the analysis of UniFrac distance metrics. However, a predictive approach of functional profiles showed no difference between the treatment groups. Fecal metabolomic analysis provided critical information regarding the raspberry-supplemented group, whose relatively higher phytosterol concentrations may be relevant for the host health, considering the proven health benefits of these phytochemicals. Further studies are needed to investigate whether the observed differences in microbial communities (e.g., Lachnospiraceae) or metabolites relate to clinically significant differences that can prompt the use of raspberry extracts to help patients with obesity.

Physiochemical Analysis, Antioxidant Effects, and Sensory Characteristics of Quark Cheese Supplemented with Ginseng Extract

  • Kim, Kee-Tae;Hwang, Ji Eun;Eum, Su Jin;Paik, Hyun-Dong
    • 한국축산식품학회지
    • /
    • 제39권2호
    • /
    • pp.324-331
    • /
    • 2019
  • The objective of this study was to evaluate physicochemical and sensory properties, the texture profile, and antioxidant activity of ginseng extract-supplemented quark cheese as a new cheese product intended to improve public health. After addition of less than 1.0% ginseng extract, the moisture content of quark significantly decreased, while fat and protein levels increased, although microbial counts and lactose and ash contents were not affected significantly (p<0.05). In terms of color, $L^*$ values decreased significantly with increasing concentration of ginseng extract, while $a^*$ values increased significantly (p<0.05). The results of texture profiling showed that cohesiveness and springiness were unaffected, whereas hardness, gumminess, and chewiness increased significantly. The 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS) radical-scavenging activities of the cheese fortified with 0%, 0.5%, or 1.0% of the ginseng extract were $4.22%{\pm}0.12%$, $20.14%{\pm}1.34%$, and $56.32%{\pm}1.54%$, respectively. The results of sensory analysis indicated that bitterness, ginseng odor, and aftertaste significantly improved with increasing concentration of ginseng extract (p<0.05). However, there was no significant difference in the overall quality attributes of quark cheese between the no-supplement control and samples with less than 0.5% of the ginseng extract (p>0.05), suggesting that these products could help to promote public health as functional foods.

Profiling of endogenous metabolites and changes in intestinal microbiota distribution after GEN-001 (Lactococcus lactis) administration

  • Min-Gul Kim;Suin Kim;Ji-Young Jeon;Seol Ju Moon;Yong-Geun Kwak;Joo Young Na;SeungHwan Lee;Kyung-Mi Park;Hyo-Jin Kim;Sang-Min Lee;Seo-Yeon Choi;Kwang-Hee Shin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제28권2호
    • /
    • pp.153-164
    • /
    • 2024
  • This study aimed to identify metabolic biomarkers and investigate changes in intestinal microbiota in the feces of healthy participants following administration of Lactococcus lactis GEN-001. GEN-001 is a single-strain L. lactis strain isolated from the gut of a healthy human volunteer. The study was conducted as a parallel, randomized, phase 1, open design trial. Twenty healthy Korean males were divided into five groups according to the GEN-001 dosage and dietary control. Groups A, B, C, and D1 received 1, 3, 6, and 9 GEN-001 capsules (1 × 1011 colony forming units), respectively, without dietary adjustment, whereas group D2 received 9 GEN-001 capsules with dietary adjustment. All groups received a single dose. Fecal samples were collected 2 days before GEN-001 administration to 7 days after for untargeted metabolomics and gut microbial metagenomic analyses; blood samples were collected simultaneously for immunogenicity analysis. Levels of phenylalanine, tyrosine, cholic acid, deoxycholic acid, and tryptophan were significantly increased at 5-6 days after GEN-001 administration when compared with predose levels. Compared with predose, the relative abundance (%) of Parabacteroides and Alistipes significantly decreased, whereas that of Lactobacillus and Lactococcus increased; Lactobacillus and tryptophan levels were negatively correlated. A single administration of GEN-001 shifted the gut microbiota in healthy volunteers to a more balanced state as evidenced by an increased abundance of beneficial bacteria, including Lactobacillus, and higher levels of the metabolites that have immunogenic properties.

각기 다른 유기물이 투여된 토양에서 토양의 화학적, 미생물학적 특성과 미생물의 다양성에 미치는 생물비료의 효과 (Effects of a Biological Amendment on Chemical and Biological Properties and Microbial Diversity in Soils Receiving Different Organic Amendments)

  • 박기춘;로버트 크레이머
    • 한국토양비료학회지
    • /
    • 제40권4호
    • /
    • pp.234-241
    • /
    • 2007
  • 여러가지의 선발된 미생물로 구성된 미생물비료는 토양 개량과 식물 생장 촉진을 위해서 여러 유기물과 결합하여 이용되기도 한다. 미생물 비료를 미생물 비료 단독으로 그리고 도시 가로수 부산물 퇴비, 가금류 분뇨 부산물, 레드클로버와 귀리의 피복작물 등의 유기물과 같이 토양에 처리하여 토양의 화학적 또는 생물학적 특성에 미치는 효과를 측정하였다. 액체상의 미생물 비료를 2년동안 3회 처리하였다. 미생물 비료 단독으로는 pH, K, 유기물 함량에 영향을 미치지 않았지만, 미생물비료의 처리는 2년 가을 모두 가금류 분뇨 부산물을 처리한 토양의 인산 함량을 증가시켰고, 첫해 가을에 퇴비를 처리한 토양의 칼슘함량을 증가시켰으며, 레드클로버를 처리한 토양의 Ca, Mg, 그리고 양이온교환용량을 감소시켰다. 미생물 비료는 레드클로버가 처리된 토양에서 첫 해 7월에 탈수소효소 활성을 증가시켰다. 미생물 비료는 유기물이 처리되지 않은 토양이나 퇴비가 처리된 토양에서 FDA의 가수분해도를 가끔 증가시켰다. 가금류 분뇨 부산물과 레드 클로버가 처리된 토양의 FDA 가수분해도와 가금류 분뇨 부산물이 처리된 토양의 탈수소효소활성은 미생물 비료의 처리로 감소하였다. 한편, 미생물 비료의 처리는 BIOLOG에 의한 토양 미생물 군락의 생리생태적 다양성에는 영향을 미치지 못했다. 따라서 토양의 미생물학적 특성에 미치는 미생물비료의 효과는 같이 투여되는 유기물의 종류에 따라 다양하다고 할 수 있으며, 탈수소효소의 활성은 레드클로버가 처리된 토양에서, 그리고 FDA 가수분해도는 퇴비와 귀리가 처리된 토양에서 가끔 증가했다.

Gut microbiota profiling in aged dogs after feeding pet food contained Hericium erinaceus

  • Hyun-Woo, Cho;Soyoung, Choi;Kangmin, Seo;Ki Hyun, Kim;Jung-Hwan, Jeon;Chan Ho, Kim;Sejin, Lim;Sohee, Jeong;Ju Lan, Chun
    • Journal of Animal Science and Technology
    • /
    • 제64권5호
    • /
    • pp.937-949
    • /
    • 2022
  • Health concern of dogs is the most important issue for pet owners. People who have companied the dogs long-term provide the utmost cares for their well-being and healthy life. Recently, it was revealed that the population and types of gut microbiota affect the metabolism and immunity of the host. However, there is little information on the gut microbiome of dogs. Hericium erinaceus (H. erinaceus; HE) is one of the well-known medicinal mushrooms and has multiple bioactive components including polyphenol, β-glucan, polysaccharides, ergothioneine, hericerin, erinacines, etc. Here we tested a pet food that contained H. erinaceus for improvement in the gut microbiota environment of aged dogs. A total of 18 dogs, each 11 years old, were utilized. For sixteen weeks, the dogs were fed with 0.4 g of H. erinaceus (HE-L), or 0.8 g (HE-H), or without H. erinaceus (CON) per body weight (kg) with daily diets (n = 6 per group). Taxonomic analysis was performed using metagenomics to investigate the difference in the gut microbiome. Resulting from principal coordinates analysis (PCoA) to confirm the distance difference between the groups, there was a significant difference between HE-H and CON due to weighted Unique fraction metric (Unifrac) distance (p = 0.047), but HE-L did not have a statistical difference compared to that of CON. Additionally, the result of Linear discriminate analysis of effect size (LEfSe) showed that phylum Bacteroidetes in HE-H and its order Bacteroidales increased, compared to that of CON, Additionally, phylum Firmicutes in HE-H, and its genera (Streptococcus, Tyzzerella) were reduced. Furthermore, at the family level, Campylobacteraceae and its genus Campylobacter in HE-H was decreased compared to that of CON. Summarily, our data demonstrated that the intake of H. erinaceus can regulate the gut microbial community in aged dogs, and an adequate supply of HE on pet diets would possibly improve immunity and anti-obesity on gut-microbiota in dogs.