• Title/Summary/Keyword: Microbial populations

Search Result 365, Processing Time 0.023 seconds

Quantitative Polymerase Chain Reaction for Microbial Growth Kinetics of Mixed Culture System

  • Cotto, Ada;Looper, Jessica K.;Mota, Linda C.;Son, Ahjeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.11
    • /
    • pp.1928-1935
    • /
    • 2015
  • Microbial growth kinetics is often used to optimize environmental processes owing to its relation to the breakdown of substrate (contaminants). However, the quantification of bacterial populations in the environment is difficult owing to the challenges of monitoring a specific bacterial population within a diverse microbial community. Conventional methods are unable to detect and quantify the growth of individual strains separately in the mixed culture reactor. This work describes a novel quantitative PCR (qPCR)-based genomic approach to quantify each species in mixed culture and interpret its growth kinetics in the mixed system. Batch experiments were performed for both single and dual cultures of Pseudomonas putida and Escherichia coli K12 to obtain Monod kinetic parameters (μmax and Ks). The growth curves and kinetics obtained by conventional methods (i.e., dry weight measurement and absorbance reading) were compared with that obtained by qPCR assay. We anticipate that the adoption of this qPCR-based genomic assay can contribute significantly to traditional microbial kinetics, modeling practice, and the operation of bioreactors, where handling of complex mixed cultures is required.

Chemical and Biological Indicators of Soil Quality in Conventional and Organic Farming Apple Orchards

  • Lee, Yoon-Jung;Chung, Jong-Bae
    • Journal of Applied Biological Chemistry
    • /
    • v.50 no.2
    • /
    • pp.88-96
    • /
    • 2007
  • Organic farming systems based on ecological concepts have the potential to produce sustainable crop yields with no decline in soil and environmental qualities. Recent expansion of sustainable agricultural systems, including organic farming, has brought about need for development of sustainable farming systems based on value judgments for key properties of importance for farming. Chemical and microbiological properties were chosen as indicators of soil quality and measured at soil depth intervals of 5-20 and 20-35 cm in conventional and organic-based apple orchards located in Yeongchun, Gyeongbuk. The orchards were two adjacent fields to ensure the same pedological conditions except management system. Soil pH in organic farming was around 7.5, whereas below 6.0 in conventional farming. Organic farming resulted in significant increases in organic matter and Kjeldahl-N contents compared to those found with conventional management. Microbial populations, biomass C, and enzyme activities (except acid phosphatase) in apple orchard soil of organic farming were higher than those found in conventional farming. Higher microbial quotient ($C_{mic}/C_{org}$ ratio) and lower microbial metabolic quotient for $CO_2(qCO_2)$ in organic farming confirmed that organic farming better conserves soil organic carbon. Biological soil quality indicators showed significant positive correlations with soil organic matter content. These results indicate organic-based farming positively affected soil organic matter content, thus improving soil chemical and biological qualities.

Packaging of Bread in Paper Made From Edible Red Algae and Coated with Antimicrobials Retards Microbial Growth in Bread during Storage

  • Ku, Kyoung-Ju;Hong, Yun-Hee;Seo, Yung-Bum;Song, Kyung-Bin
    • Preventive Nutrition and Food Science
    • /
    • v.13 no.1
    • /
    • pp.51-53
    • /
    • 2008
  • To utilize edible red algae paper for food packaging, red algae paper coated with green tea extract or catechin was prepared and microbial growth in bread wrapped with the paper was determined during storage. The paper coated with green tea extract or catechin had antimicrobial activity against Escherichia coli. Packaging of bread with the red algae paper coated with green tea extract or catechin decreased the populations of total aerobic bacteria and yeast and mold after 2 days of storage by 0.41 and 0.63 log CFU/g, respectively, compared to the control. These results suggest that bread can be packaged by edible red algae paper coated with green tea extract or catechin, resulting in inhibit microbial growth during storage.

Survival of Escherichia coli O157:H7 and Salmonella typhimurium Inoculated on Chicken by Aqueous Chlorine Dioxide Treatment

  • Hong, Yun-Hee;Ku, Kyoung-Ju;Kim, Min-Ki;Won, Mi-Sun;Chung, Kyung-Sook;Song, Kyung-Bin
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.4
    • /
    • pp.742-745
    • /
    • 2008
  • Inactivation of Escherichia coli O157:H7 and Salmonella typhimurium was evaluated on inoculated chicken by aqueous chlorine dioxide ($CIO_2$) treatment. Chicken samples were inoculated with 6-7 log CFU/g of Escherichia coli O157:H7 and Salmonella typhimurium, respectively. The chicken samples were then treated with 0, 50, and 100 ppm of $CIO_2$ solution and stored at $4{\pm}1^{\circ}C$. Aqueous $CIO_2$ treatment decreased the populations of the pathogenic bacteria on the chicken breast and drumstick. In particular, 100 ppm $CIO_2$ treatment on the chicken breast and drumstick reduced Escherichia coli O157:H7 and Salmonella typhimurium by 1.00-1.27 and 1.37-1.44 log CFU/g, respectively. Aqueous $CIO_2$ treatment on the growth of the bacteria was continuously in effect during storage, resulting in the decrease of the populations of Escherichia coli O157:H7 and Salmonella typhimurium. These results suggest that aqueous $CIO_2$ treatment should be useful in improving the microbial safety of chicken during storage.

Inactivation of Agrobacterium tumefaciens Inoculated on Fresh Radix Ginseng by Electron Beam Irradiation and Aqueous Chlorine Dioxide Treatment

  • Chun, Ho-Hyun;Kim, Ju-Yeon;Song, Kyung-Bin
    • Journal of Applied Biological Chemistry
    • /
    • v.51 no.3
    • /
    • pp.117-122
    • /
    • 2008
  • Inactivation of Agrobacterium tumefaciens was evaluated on the inoculated fresh Radix Ginseng by electron beam irradiation or aqueous chlorine dioxide ($ClO_2$) treatment. Two groups of fresh ginsengs were prepared and inoculated with A. tumefaciens. One group was then irradiated at 0, 2, and 4 kGy using an electron beam accelerator, and the other group was treated with 0, 50, and 100 ppm of aqueous $ClO_2$. Microbiological data indicated that populations of A. tumefaciens significantly decreased with increasing irradiation dose or aqueous $ClO_2$ concentration. In particular, A. tumefaciens was eliminated by irradiation at 4 kGy, and 100 ppm $ClO_2$ treatment reduced the populations of A. tumefaciens by 1.44 log CFU/g. These results suggest that electron beam irradiation or aqueous $ClO_2$ treatment can be useful in improving the microbial safety of fresh ginsengs during storage.

Detection of soil microorganisms of an upland or cultivated Codonopsis lanceolata and investigation of them affecting on flavor substances (산더덕과 재배더덕에 존재하는 토양미생물 및 향기 유발에 영향을 미치는 미생물 탐색)

  • 김동주;이진실;정가진;이세윤
    • Korean journal of food and cookery science
    • /
    • v.20 no.4
    • /
    • pp.418-422
    • /
    • 2004
  • We investigated microbial populations of an upland and cultivated Codonopsis lanceolata. The microbial populations from both types of soils were also investigated. There were more than 10 microorganisms existed in upland than cultivated one. The total viable cell counts of C. lanceolata from upland and cultivated one, especially in the upper zone, were 9.7x10$\^$6/ CFU/g and 4.2${\times}$10$\^$6/ CFU/g, respectively. As a results, upper parts of C. lanceolata in upland were considered to harbour approximately more than 2.3 fold higher microorganisms than in cultivated one. However, the total viable cell counts between the two soil habitat, that is, 1.2${\times}$10$\^$7/ CFU/g from upland and 1.0x10$\^$7/ CFU/g from cultivated, were not significantly different. We also examined the unique flavor producing microorganisms in the soil extract broth including 25% C. lanceolata extract. One microorganism was detected in upper pars of C. lanceolata and upland soil. No. 6, microorganism causing the characteristic flavor of C. lanceolata was continued as Actinomyces by microscopy.

Sanitizing and Extending of Shelf Life of Chicken Meat by Gamma Irradiation (계육의 위생화 및 안전 저장을 위한 감마선 조사)

  • 이주운;이경행;육홍선;이현자;변명우
    • Journal of Food Hygiene and Safety
    • /
    • v.14 no.2
    • /
    • pp.160-166
    • /
    • 1999
  • Microbial populations of total aerobic bacteria and coliforming bacteria, TBA, Hunter's color value, heme pigments, muscle protein solubility, cooking loss and shear force were investigated fro evaluating the shelf life of chicken legs gamma-irradiated at doses of 1, 3, 5 and 10 kGy with air-contained and vacuum-packaged methods. The initial microbial populations decreased with gamma irradiation depending upon the dose, and microorganisms in the vacuum-packaged samples were inhibited more than those in the air-contained samples. Hunter's L and a values of the surface and inside of the legs increased by gamma irradiation, showing a bright red color and the red color was maintained during the storage of both samples. The concentrations of oxymyoglobin among the heme pigments increased by gamma irradiation. Muscle protein solubility slightly increased by increasing the applied dose. There were no significant differences in the cooking loss and shear force values. In conclusion, the combination of gamma irradiation and vacuum-packaging could extend the shelf life of chilled chicken without deterioration of the quality.

  • PDF

Aqueous Chlorine Dioxide Treatment Improves the Shelf Life of Panax ginseng C.A. Meyer

  • Chun, Ho-Hyun;Song, Kyung-Bin
    • Preventive Nutrition and Food Science
    • /
    • v.12 no.4
    • /
    • pp.284-288
    • /
    • 2007
  • Effect of aqueous chlorine dioxide $(ClO_2)$ treatment on the quality change of fresh ginseng during storage was examined. Fresh ginseng samples were treated with 0, 50, and 100 ppm of $ClO_2$ solution, respectively, and stored at $4^{\circ}C$. Microbiological data of the fresh ginseng after $ClO_2$ treatment revealed that the populations of total aerobic bacteria, and yeast and mold were significantly reduced with the increase of $ClO_2$ concentration. In particular, the populations of total aerobic bacteria, and yeast and mold in the fresh ginseng decreased by 2.1 and 1.2 log CFU/g at 100 ppm $ClO_2$ treatment, respectively. Aqueous $ClO_2$ treatment improved the color of the fresh ginseng during storage, but there was no significant difference in weight loss during storage among treatments. Sensory evaluation results represented that the qualities of the fresh ginseng treated with aqueous $ClO_2$ during storage were better than those of the control. These results clearly indicate that aqueous $ClO_2$ treatment could be useful in decreasing the microbial growth and extending the shelf life of fresh ginseng.

Microbial population in Han River estuary (한강하류 감조수역에 있어서의 미생물분포)

  • Hong, Soon-Woo;Hah, Yung-Chil;Lee, Kwang-Woong
    • Korean Journal of Microbiology
    • /
    • v.6 no.4
    • /
    • pp.107-112
    • /
    • 1968
  • Examining the microbial populations in the Han River estuary, we conducted this experiment at six sites of the estuarine area, Chollyu-ri, Cholsan-ri, Wolgon-ri, Chogi-ri, Inhwa-ri, and Oepo-ri for 5 months since May 1967. From the results obtained it could be summarized as follows. 1) The salinity of the estuarine water increased in order of the distances from the base point of the Old Han River Bridge to every site of the estuary, and pH of the water, which were between 7. 3 and 8. 1, showing little difference each other in both the sites and dates of experiment. 2) The populations of the general bacteria and coliform group bacteria were highest at the site of Chollyu-ri, and it decreased with the downstreaming of the river water toward Oepo-ri site. As for fungi which have comparatively high tolerance to the salinity, its population was shown hi hest at Chogi-ri. 3) The relationship between the salinity and the number of the general bacteria have indicated that the incresed salinity reduced the growth rates of the bacteria. By this it can be assumed that the fresh-water bacteria decreased due to the sea water as well as its dilution effects. 4) The high pollution of the esturarine water was caused by the increases of inhabitants and water thrown by industries in Seoul and Kyung-In Industrial District as well as the excrements fertilized to the farms.

  • PDF

Diversity of Denitrifying Bacteria Isolated from Daejeon Sewage Treatment Plant

  • Lim Young-Woon;Lee Soon-Ae;Kim Seung Bum;Yong Hae-Young;Yeon Seon-Hee;Park Yong-Keun;Jeong Dong-Woo;Park Jin-Sook
    • Journal of Microbiology
    • /
    • v.43 no.5
    • /
    • pp.383-390
    • /
    • 2005
  • The diversity of the denitrifying bacterial populations in Daejeon Sewage Treatment Plant was examined using a culture-dependent approach. Of the three hundred and seventy six bacterial colonies selected randomly from agar plates, thirty-nine strains that showed denitrifying activity were selected and subjected to further analysis. According to the morphological and biochemical properties, the thirty nine isolates were divided into seven groups. This grouping was supported by an unweighted pair group method, using an arithmetic mean (UPGMA) analysis with fatty acid profiles. Restriction pattern analysis of 16S rDNA with four endonucleases (AluI, BstUI, MspI and RsaI) again revealed seven distinct groups, consistent with those defined from the morphological and biochemical properties and fatty acid profiles. Through the phylogenetic analysis using the 16S rDNA partial sequences, the main denitrifying microbial populations were found to be members of the phylum, Proteobacteria; in particular, classes Gammaproteobacteria (Aeromonas, Klebsiella and Enterobacter) and Betaproteobacteria (Acidovorax, Burkholderia and Comamonas), with Firmicutes, represented by Bacillus, also comprised a major group.