• 제목/요약/키워드: Microbial population

검색결과 580건 처리시간 0.029초

Relation between Chemical Properties and Microbial Activities in Soils from Reclaimed Tidal Lands at South-western Coast Area in Korea

  • Park, Mi-Na;Go, Gang-Seuk;Kim, Chang-Hwan;Bae, Hui-Su;Sa, Tongmin;Choi, Joon-Ho
    • 한국토양비료학회지
    • /
    • 제48권4호
    • /
    • pp.262-270
    • /
    • 2015
  • The scientific information between microbial community and chemical properties of reclaimed tidal soil is not enough to understand the land reclamation process. This study was conducted to investigate the relation between chemical properties and microbial activities of soils from reclaimed tidal lands located at south-western coastal area (42 samples from Goheuong, Samsan, Bojun, Kunnae, Hwaong and Yeongsangang sites). Most of the reclaimed soils showed chemical characteristics as salinity soil based on EC. Only $Na^+$ in exchangeable cation was dependent on EC of reclaimed soil, whereas other cations such as $K^+$, $Ca^{2+}$, and $Mg^{2+}$ were independent on EC. The mesophilic bacteria decreased with an increase in EC of soil. Microbial population increased with soil organic content in the range of $0{\sim}10g\;kg^{-1}$ and dehydrogenase activity less than $100{\mu}g-TPF\;g^{-1}h^{-1}$. Microbial population of soils from reclaimed tidal lands was closely related to the microbial community containing hydrolytic enzyme activities of cellulase, amylase, protease, and lipase.

염유집적(鹽類集積) 시설재배지(施設栽培地)의 토양미생물상(土壤微生物相) 평가(評價) (Evaluation of Soil Microflora in Salt Accumulated Soils of Plastic Film House)

  • 권장식;서장선;원항연;신제성
    • 한국토양비료학회지
    • /
    • 제31권2호
    • /
    • pp.204-210
    • /
    • 1998
  • 본 시험은 재배이역(栽培履歷)이 서로 상이한 시설재배지에서의 염류집원적지(鹽類集源積地)와 건전지(健全地)의 미생물상(微生物相)의 생태(生態)를 비교해석(比較解析)하고, 미생물(微生物)적 진단(診斷)에 의한 근권환경(根圈環境)의 동태(動態)와 개량기술(改良技術)을 위한 기초자료를 얻고자 수행하였다. 주요 미생물(微生物)의 분포(分布)는 건전지(健全地)에서 형광성(螢光性) Pseudomonas 속 세균(細菌)의 밀도가 높은반면 염류장해지(鹽類障害地)에서는 병원성(病原性) Fuasarium 속의 밀도가 높고 형광성(螢光性) Pseudomonas 속 세균(細菌)이 낮은 분포밀도(分布密度)를 보였다. 토양중 유기물 함량이 증가할수록 Bacillus 속(屬), 형광성(螢光性) Pseudomonas 속(屬), Enterobacteriaceae 등 세균류(細菌類)의 밀도와 Microbial biomass C함량이 크게 증가하였으며, 토양의 전기전도도(電氣傳導度)(EC)가 $5.1dS\;m^{-1}$ 이상으로 높아지면 미생물(微生物)간의 비율중 세균(細菌)/사상균(絲狀菌)(B/F), 방선균(放線菌)/사상균(絲狀菌)(A/F)의 비율이 현저히 낮아지고 형광성(螢光性) Pseudomonas 속(屬) 세균(細菌)이 급격히 감소하였다. 토양 pH와 세균(細菌)과의 관계는 고도의 정(正)의 상관관계(相關關係)를, 사상균(絲狀菌)과는 부(負)의 상관관계(相關關係)를 보였으며, 토양유기물과 방선균(放線菌), Bacillus 속(屬), Enterobacteriaceae와는 각각 $r=0.226^*$, $r=0.334^{**}$, $r=0.276^{**}$, 치환성 Ca및 치환성 Mg함량과 방선균수(放線菌數)와는 각각 $r=0.334^{**}$, $r=0.352^{**}$, 유기물함량과 Microbial biomass C 함량과는 $R=0.439^{**}$의 유의성(有意性) 있는 상관을 보였다.

  • PDF

Modeling Growth Kinetics of Lactic Acid Bacteria for Food Fermentation

  • Chung, Dong-Hwa;Kim, Myoung-Dong;Kim, Dae-Ok;Koh, Young-Ho;Seo, Jin-Ho
    • Food Science and Biotechnology
    • /
    • 제15권5호
    • /
    • pp.664-671
    • /
    • 2006
  • Modeling the growth kinetics of lactic acid bacteria (LAB), one of the most valuable microbial groups in the food industry, has been actively pursued in order to understand, control, and optimize the relevant fermentation processes. Most modeling approaches have focused on the development of single population models. Primary single population models provide fundamental kinetic information on the proliferation of a primary LAB species, the effects of biological factors on cell inhibition, and the metabolic reactions associated with cell growth. Secondary single population models can evaluate the dependence of primary model parameters, such as the maximum specific growth rate of LAB, on the initial external environmental conditions. This review elucidates some of the most important single population models that are conveniently applicable to the LAB fermentation analyses. Also, a well-defined mixed population model is presented as a valuable tool for assessing potential microbial interactions during fermentation with multiple LAB species.

수분조절제로 석탄회를 첨가한 음식쓰레기 퇴비화과정 중 미생물상의 변동 (Effect of Coal Fly Ash on Changes of Microbial Flora during the Household Garbage Composting)

  • 성순희;김우성;서정윤
    • 한국환경농학회지
    • /
    • 제16권4호
    • /
    • pp.291-294
    • /
    • 1997
  • The purpose of this study was to investigate the change of microbial flora of using coal fly ash as humidity conditioner during the household garbage composting.The summarized results of microbial flora were as follows:There was no difference of t he seasonal fluctuation of mesophilic and themophilic microorganisms.The population of thermophilic actinomycetes was rapidly increased in winter,but not much changed in spring and summer.Thermophilic and mesophilic fungal flora were increased at the same time,but the population of thermophilic fungal flora was smaller than that of mesophilic. The population of bacteria, actinomycestes and fungi showed not much difference.

  • PDF

삼림토양의 미생물군집과 아밀라아제 활성에 관한 연구 (Studies on the Microbial Population and the Amylase Activity of the Forest Soil)

  • Lee, Hee-Sun;Shim, Jae-Kuk
    • The Korean Journal of Ecology
    • /
    • 제17권2호
    • /
    • pp.171-183
    • /
    • 1994
  • Soil condition, total number of bacteria, soil amylase activity and microbial biomass $(CO_2-C)$ were measured at soil of different forest types. And the difference of the allelopathic effect was determined between fresh leaf extract of Quercus acutissima and Pinus rigida to the bacteria isolated from soil of different forest types. 1. Total number of bacteria in Carpinus laxiflora forest soil was 4~7 times larger than that in pinus desiflora forest soil. 2. Soil amylase activity was positively correlated with total number of soil bacteria and soil organic matter content. The amylase activity at F layer was 4~5 times larger than that at H layer, and that at H layer was 2~4 times larger than that at A layer. 3. Seasonal changes of microbial biomass showed a peak in summer, and vertical distribution of microbial biomass decreased with increasing soil depth. The microbial biomass in Pinus densiflora forest soil was larger than that in Quercus serrata forest soil. 4. Fresh leaf extract of Pinus rigida and Quercus acutissima showed an acceleration or inhibition effect on the growth of soil bacteria, and that of !. acutissima inhibited larger number of soil bacterial strains than that of P. rigida. 4.2% and 25% of soil bacterial strains isolated from soil of P. rigida and Q. acutissima forests were inhibited by fresh leaf extract of P. rigida and Q. acutissima, respectively.

  • PDF

Treatment of Organic Waste with Microorganisms of Mixed Population

  • 김기은
    • KSBB Journal
    • /
    • 제22권3호
    • /
    • pp.129-133
    • /
    • 2007
  • This study represents that a removal efficiency of organic matters in wastewater is activated by a sludge process using new mixed microbial population. In case of mixed microorganisms, removal rates of suspended solid (SS), biochemical oxygen demand (BOD) and chemical oxygen demand (COD) were over 90 percent under experimental condition, and removal efficiency of organic matters, sludge density index (SDI) and capillary suction time (CST) in mixed population were higher than that in not-mixed microorganism, while total kjeldahl nitrogen (TKN) and total phosphorus (T-P) which indicate a degree of eutrophication were removed easily in both case. From these results, we may propose that an application of the mixed microbial population is useful to treat domestic wastewater including a great deal of organic matters.

Phenanthrene 오염토양의 정화를 위한 동전기-생물학적복원기술의 적용과 전류밀도의 영향

  • 김상준;박지연;이유진;양지원
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2004년도 임시총회 및 추계학술발표회
    • /
    • pp.181-185
    • /
    • 2004
  • Electrokinetic bioremediation was conducted on phenanthrene-contaminated soil to study the effects of soil temperature and pH on microbial population and removal efficiency at different current densities from 0.63 to 3.13 mA cm$^{-2}$ . Microorganism used in the biodegradation of phenanthrene was Sphingomonas sp. 3Y, which was isolated from a diesel-contaminated site. The microorganism was successfully penetrated into the contaminated soil by electrokinetic phenomena and the highest microbial population was observed in the middle region of soil specimen where soil pH was near neutral. Therefore, phenanthrene removal occurred mainly at anode and middle parts of soil specimen due to a relatively high microbial population. Also, the highest removal efficiency of 68.8% was obtained at 1.88 mA cm$^{-2}$ while low degradation was detected at 3.13 mA cm$^{-2}$ . It was presumably because the soil temperature at 1.88 mAcm$^{-2}$ was close to the appropriate temperature of about 30'c while the temperature increase to above 45$^{\circ}C$ at 3.13 mA cm$^{-2}$ inhibited the microbial activity severely.

  • PDF

수확시기가 신선편이 결구상추의 품질 및 미생물수에 미치는 영향 (Effects of Harvest Seasons on Quality and Microbial Population of Fresh-cut Iceberg Lettuce)

  • 인병천;김지강;;이정수
    • 생물환경조절학회지
    • /
    • 제19권4호
    • /
    • pp.343-350
    • /
    • 2010
  • 본 연구는 수확시기와 같은 수확 전 요인이 수확 후 신선편이 결구상추의 품질과 미생물 수에 미치는 영향을 구명하기 위하여 수행하였다. 신선편이 가공업체에서 사용하는 결구상추를 5, 6, 7, 10, 12월에 수확하여 관행적인 방법으로 가공한 뒤 필름에 포장하고 $5^{\circ}C$에서 9일 동안 저장하면서 품질 조사를 하였다. 미생물 측정을 위한 샘플은 각 단계별(수확, 수송, 가공전, 절단, 1차-세척, 2차-세척, 저장 후 3, 6, 9일)로 수집되었다. 실험 결과 하우스에서 재배되어 5, 10월에 수확된 결구상추는 신선편이 가공 후 포장백 내부의 $O_2$ 농도가 낮고 $CO_2$는 매우 높았으며, 제품의 전해질 누출이 높게 나타났다. 반면 노지에서 재배된 6, 7월 수확 및 겨울철 하우스재배인 12월에 수확한 원료 는 비교적 낮은 $CO_2$, 전해질 누출 및 갈변을 나타내었다. 원료상태의 미생물수는 7월(6.76 log)에 가장 높았고, 신선편이 가공 후 저장중의 미생물 증식은 5월 시료에서 가장 높게 나타났다. 이상의 결과로부터 신선편이 결구상추를 고온, 저습조건의 노지에서 재배되어 6월 상순에 수확한 원료를 사용한 경우 품질과 미생물적 안전성이 모두 우수하였다. 반면, 하우스에서 재배되어 10월에 수확한 결구상추를 원료로 사용한 경우 가공 전과 후의 미생물적 안전성은 모두 우수하였으나, 이취가 빨리 발생하여 품질특성이 나쁘게 나타났다. 따라서 연중 고품질의 신선편이 결구상추 생산을 위해서는 품질과 안전성을 동시에 제어하고 원료의 환경에 따른 품질유지 기간을 달리 설정할 필요가 있는 것으로 생각된다.

Microbial population dynamics in constructed wetlands: Review of recent advancements for wastewater treatment

  • Rajan, Rajitha J.;Sudarsan, J.S.;Nithiyanantham, S.
    • Environmental Engineering Research
    • /
    • 제24권2호
    • /
    • pp.181-190
    • /
    • 2019
  • Constructed wetlands are improvised man-made systems, designed for adopting the principle of natural wetlands for purifying wastewater - the elixir of life. They are used widely as a cost-effective and energy-efficient solution for treating greywater generated from different tertiary treatment sources. It provides an elaborate platform for research activities in an attempt to recycle earth's natural resources. Among the several organic impurities removal mechanisms existing in constructed wetland systems, the earth's active microbial population plays a vital role. This review deals with the recent advancements in constructed wetland systems from a microbiological perspective to (effect/ devise/ formulate) chemical and physical treatment for water impurities. It focuses on microbial diversity studies in constructed wetlands, influence of wetland media on microbial diversity and wetland performance, role of specific microbes in water reuse, removal of trace elements, some heavy metals and antibiotics in constructed wetlands. The impurities removal processes in constructed wetlands is achieved by combined interactive systems such as selected plant species, nature of substrate used for microbial diversity and several biogeochemical effected reaction cycles in wetland systems. Therefore, the correlation studies that have been conducted by earlier researchers in microbial diversity in wetlands are addressed herewith.